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Abstract 

 

 

Characterization and Formation of Particulate Nitrate in a Coastal Area 

Melissa Cheryl Foster Evans 

ABSTRACT 

 

 Particulate nitrates play important roles in the atmosphere.  They consist 

mainly of NH4NO3 and NaNO3, products from the reactions of gaseous HNO3 

with gaseous NH3 and sea salt, respectively.  The gas-to-particle phase 

conversion of nitrate changes its deposition characteristics and ultimately 

changes the transport and deposition rates of the locally produced species.  

Studies were conducted to develop background information on the particle 

concentrations and size distributions and the chemistry and kinetics behind the 

interactions.   

 The predominant nitrate species in the Tampa Bay area was identified as 

coarse mode NaNO3.  NH4NO3 was not detected as it has high volatility at 

ambient temperatures.  Spatial distribution sampling determined a gradient of 

NaCl and NaNO3 with increased distance from the coastal shore and an increase 

in the gas-to-particle conversion of nitric acid along a predominant air mass 

trajectory. 

 The EQUISOLV II thermodynamic equilibrium model was evaluated.  It 

was determined that the model can be used to predict gas and size-distributed 
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xix 

particulate matter concentrations.  The model was also used to examine the gas-

to-particle partitioning of nitric acid to nitrate by NaCl and CaCO3.  Both sodium 

and calcium partitioned nitrate to the particle phase.  The magnitude of the 

partitioning was directly dependent on the equilibrium coefficients.   

 The fine mode percentage of the total nitrate was determined using two 

methods.  The results were used to expand the current data set to account for 

the coarse mode nitrate, and they indicated that particle nitrate accounted for 9% 

of the total nitrogen deposition flux to Tampa Bay.   

 The formation of particle nitrate was examined using a nitrate 

accumulation model.  Results indicated that the equilibrium time for particles less 

than 10 µm in diameter was significantly less than their atmospheric residence 

time, with fastest conversion occurring under the highest relative humidity 

conditions.   

 This information is vital in the development of atmospheric nitrogen dry 

deposition estimates, which are used to assess water quality and nutrient 

loading.  These data can be used to determine air-monitoring strategies and to 

develop models that account for the coarse particle nitrogen species.   
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1 

 

 

 

Introduction 

 

Eutrophication 

 

The atmospheric deposition of nitrogen is a major concern for the Tampa 

Bay, Florida region (Tampa Bay National Estuary Program, 1996).  Nitrogen is a 

primary limiting nutrient in marine waters (Conley, 2000; de Wit and 

Bendoricchio, 2001; Nixon et al., 1996) for phytoplankton growth (Pryor and 

Sorensen, 2000) and is a fundamental building block for plant cells (Pryor and 

Barthelmie, 2000a).  Excess amounts of nitrogen can pollute the bay by 

accelerating phytoplankton growth (Burian et al., 2001; Tampa Bay National 

Estuary Program, 1996).  These algal blooms, or increased abundance of 

phytoplankton, have implications for water quality, human health, and ecosystem 

health and productivity (Pryor and Barthelmie, 2000b).  The algal blooms inhibit 

sufficient light penetration required for seagrass growth and result in seagrass 

death.  This has a dramatic impact on the local environment, as the seagrasses 

serve as a protective habitat and feeding grounds for fish and shellfish.  Partial or 

complete oxygen depletion (hypoxia or anoxia) is often seen following the algal 

blooms as the algae begin to decay (Burian et al., 2001; de Leeuw et al., 2001).  

The condition associated with excess nitrogen, algal blooms, oxygen depletion 
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and the degradation of water quality is known as eutrophication (Paerl, 2001; 

Tampa Bay National Estuary Program, 1996).   

Research has indicated that approximately 29% (or 980 metric tons-N yr-1) 

of the bay’s total nitrogen loading comes from atmospheric deposition of 

pollutants directly to the surface of the bay (Burian et al., 2001; Patwardhan and 

Donigian Jr., 1995; Tampa Bay National Estuary Program, 1996; Zarbock et al., 

1996).  These estimates are actually much higher if deposition to the watershed 

is included, since much of this nitrogen will eventually enter the bay in 

stormwater runoff (Tampa Bay National Estuary Program, 1996).  EPA estimates 

that as much as 67% of Tampa Bay’s total nitrogen could come from the 

atmosphere (Patwardhan and Donigian Jr., 1995).  Other major sources of 

nitrogen loading include point sources (19%) and fertilizer application (14%) 

(Patwardhan and Donigian Jr., 1995; Zarbock et al., 1996). 

 Dry and wet deposition are the two main processes by which nitrogen is 

transferred to surface waters.  Dry deposition is the transfer of gaseous species 

and particles in the absence of precipitation and is determined by meteorological 

conditions, atmospheric conditions and particle and gas properties.  In wet 

deposition, gaseous species and particles are transferred to the surface via 

precipitation (rain, fog, sleet and snow). 

 Dry deposition fluxes are difficult to measure and are often calculated 

under the assumption that the dry deposition flux is directly proportional to the 

concentration of the species (Caffrey et al., 1998; Poor et al., 2001; Seinfeld and 

Pandis, 1998), 
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15576.3××= CVF d       (Equation 1) 

where F  (kg ha-1 yr-1) is the dry particle or gas deposition flux, Vd (cm s-1) is the 

deposition velocity and C (µg m-3) is the concentration of nitrogen.  The Vd 

depends on particle size or Henry’s constant for gaseous species, meteorological 

conditions and the characteristics of the depositing surface (Caffrey et al., 1998).  

Wet deposition fluxes are estimated using: 

PCF ×=         (Equation 2) 

where F  (kg ha-1 yr-1) is the wet deposition flux, C (µg m-3) is the concentration 

and P (m yr-1) is the precipitation rate (Luo et al., 2003). 

 

Aerosols 

 

 Aerosols are defined as a suspension of liquid or solid particles in a gas 

(McMurry, 2000; Wayne, 2000).  They are an extremely important component of 

our atmosphere; however, they are only partially understood.  They play 

important roles in many biogeochemical cycles, acting as reaction sites and as 

carriers for many sorbed species (Dentener et al., 1996).  Particles also 

contribute to smog episodes and light and radiation scattering (Seinfeld and 

Pandis, 1998).  Aerosols are produced by natural and anthropogenic activities.  

Natural sources include sea spray, mineral dust, forest fires and volcanic 

emissions (Wayne, 2000).  Anthropogenic activities predominantly include the 

burning of fossil fuels and biomasses and contribute mostly to the submicron 

(less than 1 µm diameter) particle concentrations.  These particles are primary 
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pollutants, as they are emitted directly into the atmosphere (Finlayson-Pitts and 

Pitts Jr., 2000).  Secondary pollutant or aerosol formation includes the gas-to-

particle conversion of emitted primary pollutants, such as the oxidation of SO2 to 

sulfate compounds. 

 There are two main size classifications of particles based on observed 

modes: (a) fine, those with a diameter less than 2.5 µm and (b) coarse, those 

with a diameter greater than 2.5 µm (Seinfeld and Pandis, 1998).  This size 

distinction is important, as the two classes differ in their modes of production and 

removal, chemical composition, deposition and optical properties (Seinfeld and 

Pandis, 1998).  Within the fine particle category are two distinct modes: (a) the 

nuclei mode, particles with a diameter of 0.005 to 0.1 µm and (b) the 

accumulation mode, diameter of 0.1 to 2.5 µm.  Due to their size, nuclei mode 

particles compose a very small mass percent of all particulate matter.  They are 

formed from combustion sources and nucleation of atmospheric species and are 

removed from the mode primarily through coagulation with larger particles.  

Accumulation mode particles comprise a significant amount of aerosol mass and 

surface area.  These particles are formed through nuclei particle coagulation and 

from the growing of existing particles due to the condensation of gases.  As 

indicated by its name, the accumulation mode has very inefficient removal 

mechanisms, resulting in long residence times (Seinfeld and Pandis, 1998).  

Mechanical processes generate the coarse mode particles.  These particles have 

large gravitational settling velocities, allowing them to settle out of the 

atmosphere in a relatively short amount of time.   
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Sea Salt 

 

 Sea salt particles are considered to be the dominant particles originating 

from natural sources (Roth and Okada, 1998).  They are the largest source of 

tropospheric particulate matter (Weis and Ewing, 1999) and are the principal 

constituent of the coarse particle mode (Fitzgerald, 1991).  The global emission 

rate of sea salt is estimated at 1000 to 2000 Tg yr-1 (Jaenicke, 1993).  Sea salts, 

which are primarily composed of NaCl, play an important role in our atmosphere, 

as they provide a reactive surface for many pollutants.  Particulate sulfates can 

be formed from the gas-to-particle conversion of biogenically emitted SO2 on sea 

salt particles.  Heterogeneous chemical reactions with acidic species (i.e. HNO3) 

result in the emission of volatile HCl, creating a source for HCl in the atmosphere 

(Roth and Okada, 1998). 

Sea salts are produced at the ocean’s surface by the mechanical wave 

action and the bursting of entrained air bubbles (Allen et al., 1996; de Leeuw et 

al., 2001; O'Dowd et al., 1997).  The mechanical generation of aerosols results in 

a wide size range of particles produced from 0.1 to 100 µm in diameter (Andreas 

et al., 1995; O'Dowd et al., 1997).  The majority of sea salt particles are found in 

the coarse mode with a diameter greater than 1 µm (Plate and Schulz, 1997).  

The coarse mode makes up over 95% of the total mass but only contributes to 5-

10% of the total particle number (Seinfeld and Pandis, 1998). 

Sea salt, as a primary component of marine aerosol, can affect the climate 

by scattering and absorbing radiation (Fitzgerald, 1991).  Research has shown 
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that sea salt particles can be responsible for up to 75% of light scattering by 

aerosols (Clegg and Toumi, 1998; Murphy et al., 1998).  The concentration of 

sea salt aerosol is a function of wind speed, relative humidity and turbulence (de 

Leeuw, 1986; Lovett, 1978; O'Dowd et al., 1997). 

 The relative humidity in the marine boundary layer is often above the 

deliquescent point of sea salt, the relative humidity point at which the substance 

absorbs atmospheric moisture to produce a saturated aqueous solution (Pilinis et 

al., 1989).  The sorbed waters are unbound, and their quantity is governed by 

thermodynamic equilibrium.  The deliquescent relative humidity for sodium 

chloride is 76% (Seinfeld and Pandis, 1998).  Consequently, most sea salt 

aerosols exist as concentrated aqueous droplets of salt.  The available surface 

waters allow for the scavenging of atmospheric gases, chemical transformations 

and volatilization of products (Erickson III et al., 1999). 

 Sea salts enriched in sulfur (as sulfate) are considered aged sea salts, 

with sulfur being greater than 20% (by weight) and sodium plus chloride greater 

than 60% (Ebert et al., 2000).  Freshly emitted sea salts are primarily composed 

of sodium and chloride.  These particles are categorized as fresh sea salts, 

distinguished as having sodium and chloride making up over 85% of the total 

mass.  Over 90% of a fresh sea salt particle is 1:10 (by weight) magnesium and 

sodium chlorides (Laskin et al., 2002).  Processing through reactions with other 

species results in the replacement of chloride with nitrate in both salts.   
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NaCl(aq,s) + HNO3(g)   NaNO3(aq,s) + HCl(g)   (Reaction 1) 

MgCl2(aq,s) + 2 HNO3(g)    Mg(NO3)2(aq,s) + 2 HCl(g)  (Reaction 2) 

 Magnesium and sodium are untouched by these reactions and are 

therefore used as signature elements for particle apportionment.  Sea salt 

particles are primarily processed during the daytime hours, as gaseous NO2 is 

photochemically converted into reactive gaseous HNO3.  Laskin et al. (2002) 

reported that daytime sea salt particles in Houston, Texas were found to be 

almost completely processed, or converted NaNO3 particles.  They noted by 8:00 

a.m. chloride started to disappear from the particle composition and four to five 

hours later was completely eliminated.  However, nighttime sea salt particles 

were found to be almost completely unprocessed, and their composition was 

close to that of seawater.   

 

Mineral Dust 

 

 Mineral dust aerosols are formed from wind-blown soils.  It is estimated 

that 1000 to 3000 Tg of mineral aerosol are emitted annually into the atmosphere 

(Dentener et al., 1996; Grassian, 2002).  Mineral dusts play an important role as 

a sink for nitric acid, converting it into a coarse mode species, Ca(NO3)2.   

CaCO3(s) + 2 HNO3(g)  Ca(NO3)2(aq,s) + CO2(g) + H2O(g,aq) (Reaction 3) 

 Dentener et al. (1996) stated, however, that the uptake of HNO3 can take 

place only in mineral dust aerosols with a high enough alkalinity to overcome the 

acidity associated with uptake.  The alkalinity of the mineral dust is to a great 
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extent determined by the concentration of CaCO3.  Soils in arid regions of the 

United States can contain 3 to 8% by weight Ca2+ (Dentener et al., 1996). 

 

Sodium 

 

 A significant amount of particulate sodium exists in our atmosphere, as the 

“emission sources of sodium are widely spread on the Earth’s surface” (Ooki et 

al., 2002).  Sodium along with chloride is one of the largest trace components of 

sea spray, which accounts for 36% of the global sodium emissions (Ooki et al., 

2002; Seinfeld and Pandis, 1998).  Land-based mineral dust emissions 

contribute 42% of the total sodium emissions (Ooki et al., 2002; Seinfeld and 

Pandis, 1998).  According to the 1987 California Air Resources Board emissions 

inventory, land-based sodium emissions were estimated at 5 metric tons day-1 

(Jacobson, 1997).  Land-based sources include paved road dust and diesel 

emissions.   

 Sodium can be found in the coarse and fine particle modes.  Refuse 

incineration is considered to be the most significant source of fine particle sodium 

in urban air (Ooki et al., 2002).  In Japan, refuse incineration accounted for 24-

43% of the total sodium emissions and for 79-91% of the total anthropogenic 

sodium emissions (Ooki et al., 2002). 

 In marine environments, sodium is primarily seen in the coarse fraction.  It 

is often used as an indicator for primary aerosols, as it is a conservative 

nonreactive species (Ten Brink, 1998).   
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Chloride 

 

 The primary source for particulate chloride is sea salt, as NaCl.  Land-

based sources for particulate chloride include biomass burning, fossil fuel 

burning, chemical manufacturing and soil dust (Jacobson, 1997).  Gaseous 

chloride is also emitted through coal combustion (over 98%) and waste 

incineration (Saxena et al., 1994).  Chloride is mainly distributed in the coarse 

mode, as NaCl.  However, combustion sources contribute to fine mode chloride. 

 HCl can also be produced through the reaction of nitric acid with sodium 

chloride (Reaction 1).  The production of HCl gas is termed a chloride-depletion 

process with respect to particulate chloride because chloride changes phase 

from particle to gas (Cheng et al., 2000).  This reaction with sea salt plays a role 

in the halogen release over the marine boundary layer (Aristarain and Delmas, 

2002), which may be linked to ozone depletion (Pryor and Sorensen, 2000).  In 

freshly produced sea salt, Cl-:Na+ molar ratio is 1.17 (Zhuang et al., 1999a).  

Chloride depletion can be calculated using the estimated quantities of chloride 

compared to the experimental quantities.   

%100
])[174.1(

])[][174.1(% ×
−

=−
+

−+
−

Na
ClNadepCl    (Equation 3) 

 Chloride depletion has been found to decrease with increasing particle 

size, suggesting a surface mechanism for the loss (Jordan et al., 2000).  Two 

factors have been noted that affect the extent of chloride depletion.  They include 
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relative humidity and the competition of Ca2+ with Na+ for the acidic gases 

(Zhuang et al., 1999a). 

 As nitric acid is taken up by the sea salt particle, it forces HCl into the gas 

phase.  This process is due to the Henry’s constant and the binary activity 

coefficient of both HNO3 and HCl.  The binary activity coefficient for dissolved 

HCl increases exponentially at high molalities, whereas the activity coefficient of 

dissolved nitric acid remains moderately low at high molalities (Jacobson, 1997; 

Jacobson et al., 1996).  As HCl is released or degassed from the sea salt 

particle, the pH of the aerosol increases due to the loss of H+ (Brimblecombe and 

Clegg, 1988).   

 

Nitrate  

 

The primary oxidized reactive nitrogen compounds of concern are nitric 

acid (HNO3) and particulate nitrate (NO3
-).  These compounds are considered 

secondary pollutants, as they are not directly emitted into the atmosphere 

(Blanchard, 1999).  Nitric acid is produced through the gas phase oxidation of 

NOx (NOX = NO + NO2) (Zhuang et al., 1999b), which is emitted directly into the 

atmosphere from anthropogenic activities, including the combustion of fossil 

fuels.  Natural sources for nitrogen oxides include soil, volcanic emissions and 

lightning; they make up less than 10% of the total emissions (Erisman et al., 

1998). 
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During daylight hours, HNO3 is produced by NO2 reaction with a hydroxyl 

radical (Blanchard et al., 2000; Seinfeld and Pandis, 1998): 

•OH + NO2    HNO3       (Reaction 4) 

 At night, HNO3 is produced through a multi-step process (Blanchard et al., 

2000; Seinfeld and Pandis, 1998): 

O3 + NO2    •NO3 + O2       (Reaction 5) 

NO2 + •NO3    N2O5       (Reaction 6) 

N2O5 + H2O    2 HNO3       (Reaction 7) 

 During atmospheric chemical processes, these oxides are transformed 

into more water-soluble and thermally stable pollutants (nitrates), which are 

subject to wet or dry atmospheric deposition (Ali-Mohamed and Jaffar, 2000; 

Mamane and Mehler, 1987; Pilinis and Seinfeld, 1987; Pio and Harrison, 1987; 

Russell and Cass, 1984; Watson et al., 1994). 

Because there is no primary source for coarse particle nitrate, it is 

assumed to originate from atmospheric reactions of gaseous nitrogen species 

with coarse particles (Evans and Poor, 2001; Pakkanen et al., 1996b).  Sea salt 

and mineral dust particles play an important role in the incorporation of nitrate 

aerosols in the coarse mode (greater than 2.5 µm).  The oxidized nitrogen 

species (nitrous and nitric acids) can react with NaCl on the surface of sea salt 

aerosols or CaCO3 on mineral dust to form NaNO3 or Ca(NO3)2 and HCl 

(Reactions 1 and 3) (Clarke et al., 1999; de Leeuw et al., 2001; Dentener et al., 

1996; Evans and Poor, 2001; Goodman et al., 2000; Pakkanen et al., 1996a; 

Tabazadeh et al., 1998; Ten Brink and Spoelstra, 1998; Zhuang et al., 1999b).  
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Because NaNO3 is formed on the surface of an existing coarse mode sea 

salt or mineral dust particle, NaNO3 and Ca(NO3)2 will be collected in the coarse 

mode (de Leeuw et al., 2001).  The production of coarse mode nitrogen from 

gaseous HNO3 greatly affects its deposition rate.  Larger particles have a higher 

“efficiency of precipitational scavenging via inertial impaction” (de Leeuw et al., 

2001) and a change in gravitational settling velocities, Vd, as compared to gas 

phase species.  This change in deposition rate may change current nitrogen 

loading estimates when accounting for coarse nitrate particles (Torseth et al., 

2000). 

 

Ammonium  

 

Ammonia, NH3, is the predominant alkaline atmospheric gas (Seinfeld and 

Pandis, 1998) and is a primary pollutant.  Over 90% is emitted from agricultural 

practices as animal waste and fertilizer loss (Erisman et al., 1998; Seinfeld and 

Pandis, 1998).   

Other ammonia sources include landfills, wastewater treatment plants, 

industry and combustion.  Industrial sources release ammonia during the 

manufacturing of ammonia-based products, such as fertilizer.  It is also used to 

make nitric acid and to remove NOX from industrial coal boiler flue gases (Chang 

et al., 2003). 

Ammonia is readily absorbed by water and soil surfaces, resulting in a 

relatively low residence time of approximately 10 days (Seinfeld and Pandis, 
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1998).  In 1994, the total global ammonia emissions were estimated at 45 Tg-N 

yr-1 (Dentener and Crutzen, 1994; Seinfeld and Pandis, 1998).  Annual national 

(U.S.A.) ammonia emissions were estimated in 1997 to be 4.47 Tg-N yr-1 

(Gilliland et al.). 

Both ammonia and the ammonium ion, NH4
+, contribute to nutrient 

loadings as sources for nitrogen.  Processes in which this nitrogen is converted 

into secondary aerosols include the reactions of ammonia with nitric and sulfuric 

acids.  Fine particulate nitrate and ammonium are produced from the 

heterogeneous chemical reactions of nitric and sulfuric acids and ammonia, 

producing ammonium nitrate (NH4NO3) (Reaction 8) and ammonium bisulfate 

(NH4HSO4) (Reaction 9) or ammonium sulfate ((NH4)2SO4) (Reaction 10) (Paerl, 

2001; Seinfeld and Pandis, 1998; Wall et al., 1988).   

NH3(g) + HNO3(g, aq)    NH4NO3(aq, s)    (Reaction 8) 

NH3(g) + H2SO4(aq)    NH4HSO4(aq, s)    (Reaction 9) 

NH3(g) + NH4HSO4(aq, s)   (NH4)2SO4(aq, s)   (Reaction 10) 

The ammonium nitrate reaction exists in equilibrium and is reversible.  

This reaction usually occurs in fogs and clouds.  Ammonium nitrate is quite 

unstable (Watson et al., 1994) and is easily forced back into its reactive gaseous 

components.  Production of NH4NO3 can range from 1 to 90 percent per hour, 

depending on the time of day and meteorological conditions, mainly temperature 

and relative humidity (Calvert and Stockwell, 1983; Watson et al., 1994).   

 It is important to note that ammonium nitrate is a major secondary 

component of suspended particles in urban areas (Watson et al., 1994).  With 
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increasing relative humidity, ammonium nitrate adsorbs water, resulting in 

particle growth and increased light scattering.  A wintertime study in Denver, CO, 

found ammonium nitrate concentrations as high as 28 µg m-3, contributing to 180 

Mm-1 light extinction (Watson et al., 1994). 

Ammonium may also be seen in the coarse mode aerosol.  Ammonia may 

neutralize with acidic species on sea salt particles, or physical processes may 

transfer the NH4NO3, NH4HSO4 and (NH4)2SO4 to the coarse mode (Cheng et al., 

2000; Yeatman et al., 2001) 

 

Sulfate 

 

Sulfur dioxide, SO2, is a primary pollutant and is the “predominant 

anthropogenic sulfur-containing air pollutant” (Seinfeld and Pandis, 1998).  In 

1995, global sulfur emissions were estimated at 98-120 Tg-S yr-1, with 

approximately 80 Tg-S yr-1 emitted as SO2 (Berresheim et al., 1995; Seinfeld and 

Pandis, 1998). 

Sulfuric acid, H2SO4, is produced when SO2 is oxidized in the presence of 

hydroxyl radicals and water vapor, forming sulfuric acid droplets (Watson et al., 

1994).  These droplets are then readily neutralized by ammonia (Reactions 9-

10), forming fine particulate species (Allen and Miguel, 1995).  The reaction of 

ammonia with sulfuric acid occurs in two stages (Harrison, 1993; Mehlmann and 

Warneck, 1995).  In an environment with low concentrations of ammonia, sulfate 

and nitrate compete for available ammonia.  However, sulfate preferentially 
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scavenges ammonia and tends to drive the unstable ammonium nitrate to the 

gas phase, resulting in very low particulate ammonium nitrate levels.  Significant 

amounts of ammonium nitrate are formed only when the concentrations of 

ammonia exceed that of sulfate by a molar ratio of two or more (Watson et al., 

1994).  Below this ratio, the aerosol phase will be acidic and sulfate may exist as 

ammonium bisulfate (Seinfeld and Pandis, 1998).  Transformation rates range 

from 0.01 to 5 percent per hour of the SO2 concentration (Calvert and Stockwell, 

1983), being most active during daylight hours (Watson et al., 1994). 

Coarse mode sulfate arises from the reaction of sulfuric acid with sea salt 

or mineral dust particles (Wall et al., 1988; Zhuang et al., 1999a). 

H2SO4(aq) + 2 NaCl(aq,s)   Na2SO4(aq,s) + 2 HCl(g)  (Reaction 11) 

H2SO4(aq) + CaCO3(aq,s)   CaSO4(aq,s) + H2O(g,aq) + CO2(g) (Reaction 12) 

 The sulfate formed from the reaction with sea salt is termed non-sea salt 

sulfate, as it was not part of the initial particle originating from the sea (Zhuang et 

al., 1999b).  This reaction is also important as it leads to particulate chloride 

depletion. 

 It has also been found that coarse mode sulfate is formed through the 

heterogeneous oxidation of SO2 by O3 in freshly formed sea salt particles.  

Because these particles contain water and are alkaline, this process proceeds 

rapidly.  It has been noted that the conversion of SO2 to sulfate is strongly 

dependent on the amount of available surface waters and water volume of the 

particle (Chameides and Stelson, 1992; Sievering et al., 1995; Zhuang et al., 

1999a). 
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Particle Diameter 

 

 Atmospheric particles are usually categorized by their diameters, implying 

the particles are spherical.  Many atmospheric particles, however, have irregular 

shapes and are not easily categorized by their geometric radii or diameters.  

Equivalent or effective diameters are often used as they depend on physical, 

rather than geometric, properties (Finlayson-Pitts and Pitts Jr., 2000). 

 The most common effective diameter used is the aerodynamic diameter, 

Da, which is the “diameter of a spherical particle with a standard density of 1000 

kg m-3 (density of a water droplet) that has the same settling velocity as the 

particle” (Hinds, 1999).  The aerodynamic diameter is used to correct for particle 

morphology as it standardizes for shape (a sphere), density and settling 

velocities.  It is the primary particle property for characterizing filtration and 

respiratory deposition (Finlayson-Pitts and Pitts Jr., 2000; Hinds, 1999) and can 

be calculated using: 

o

p
ga DD

ρ

ρ
=         (Equation 4) 

where Da is the aerodynamic diameter, Dg is the geometric diameter, ρp is the 

particle density, and ρo is the standard density. 

 Another type of diameter used is the Stokes diameter, Ds, which is the 

“diameter of a sphere having the same density and settling velocity as the 

particle” (Hinds, 1999).  The Stokes diameter standardizes for settling velocity, 
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whereas the aerodynamic diameter standardizes for both settling velocity and 

density. 

 The term “diameter” in this work represents the aerodynamic diameter of 

atmospheric particles unless otherwise stated.  As will be discussed later, the 

particles in the area of interest were determined to be predominantly in the 

metastable or deliquescent state.  Their densities were near that of the standard 

density, allowing the assumption that the aerodynamic diameter approximated 

the geometric diameter. 

 

Deposition Velocities 

 

 The significance in the gas-to-particle conversion of gaseous HNO3 to 

particle NO3
- relates to the deposition velocities of the substances.  The dry 

deposition velocity of HNO3 is relatively high wih respect to fine particulate 

matter.  However, since most of the NO3
- particles formed in the Tampa Bay area 

are in the coarse size range (diameter greater than 2.5 µm), the conversion may 

have an increased significance.  To determine if the phase change results in 

increased or decreased nitrogen loadings to the Tampa Bay watershed, the 

deposition velocities of the formed species were reviewed. 

 Typical dry deposition velocities for gaseous HNO3 are reported as 4 and 

1 cm s-1 for over land and over open water, respectively (Seinfeld and Pandis, 

1998).  Particle dry deposition velocities over water can be calculated using a 

combination of the NOAA Buoy and Williams models (Bhethanabotla, 2002; Poor 
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et al., 2001; Valigura, 2001; Williams, 1982).  The NOAA Buoy model is an 

iterative bulk exchange model for momentum, heat and moisture; and the 

Williams model is a two-layer multiple-path model for the dry deposition of 

particles to surface waters.  The combined or integrated NOAA Buoy-Williams 

model includes the effects of wave breaking, particle hygroscopic growth and 

turbulent heat flux.  The model calculates the over water dry deposition velocities 

on the basis of turbulent heat transfer and gravitational settling of particles.  

Table 1 lists the average over water deposition velocity and one standard 

deviation for the MOUDI ten particle size ranges using May 2002 meteorology.   

 
      

Particle Range   
(µm) 

Geometric Mean 
Dp50 (µm) 

Average Deposition 
Velocity (cm s-1) 

18-30 23 1.7 ± 0.17 
3.2-18 7.6 0.21 ± 0.12 
1.8-3.2 2.4 0.02 ± 0.01 
1.0-1.8 1.3 0.01 ± 0.01 
0.56-1.0 0.75 0.01 ± 0.01 
0.32-0.56 0.42 0.01 ± 0.01 
0.18-0.32 0.24 0.01 ± 0.01 
0.10-0.18 0.13 0.02 ± 0.02 

0.056-0.10 0.075 0.03 ± 0.03 
0.01-0.056 0.024 0.07 ± 0.07 

   
Table 1.  Average over water deposition velocities and their respective standard 

deviations for the MOUDI ten particle size ranges calculated using May 2002 

meteorological data. 

 

 The geometric mean of each size bin was used as the Dp50 for the model 

input.  The geometric mean can be calculated by:  
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n
nxxxMeanGeometric ))...()(( 21=     (Equation 5) 

 

Sampling 

 

 It is essential to collect accurate measurements of atmospheric gases and 

particulate species in order to understand the processes occurring in our 

environment.  These species are difficult to collect, as they exist at trace levels in 

multiple phases.  Many species are partitioned between the gaseous and 

particulate phases.  Numerous methods have been developed to facilitate 

collection of atmospheric species.  They include filtration (Allen et al., 1989; 

Appel et al., 1980; Okita et al., 1976; Spicer et al., 1982), diffusion denuders 

(Forrest et al., 1982; Harrison and Kitto, 1990; Possanzini et al., 1983) and 

spectroscopy (Platt et al., 1980). 

 

Filtration Methods 

 

 Filtration sampling is the most widely used technique for sampling 

atmospheric gaseous and particulate species due to its low cost and simplicity 

(Kitto and Colbeck, 1999).  Many types of filters have been used, the most 

popular being glass fiber, quartz fiber, PTFE (polytetrafluoroethylene) Teflon® 

membrane and nylon filters.  PTFE Teflon is a choice of many scientists, as it is 

inert towards chemical species (Kitto and Colbeck, 1999) and contains low blank 

analyte levels.  Quartz fiber filters are typically used for organic sampling, as they 
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can be heated to remove blank analytes.  Nylon filters have the ability to adsorb 

acidic gaseous species, making them ideal for nitric and hydrochloric acid 

collection (Dasch et al., 1989; Grosjean, 1982; Hering et al., 1988; Spicer et al., 

1982).  In addition to these filters, impregnated filters may also be used.  Nitric 

acid has been collected using sodium chloride- (Appel et al., 1980; Forrest et al., 

1980; Karakas and Tuncel, 1997), potassium carbonate- (Kim and Allen, 1997) 

and tetrabutyl ammonium hydroxide-impregnated filters (Huebert and Lazrus, 

1980).  SO2 has been collected using potassium hydroxide- (Nodop and 

Hanssen, 1986) and various carbonate- (Karakas and Tuncel, 1997; Kim and 

Allen, 1997) impregnated filters.  Ammonia has been collected using a variety of 

acid-impregnated filters, including citric, oxalic and phosphoric acids (Harrison 

and Kitto, 1990; Karakas and Tuncel, 1997; Masia et al., 1994). 

 Filters are deployed in the field for atmospheric gaseous and particulate 

species collection in a filter pack.  Filter packs can be set up using a single filter 

or multiple filters, allowing for the collection of multiple species in both the gas 

and particle phases.  A multiple filter setup is used to collect and determine the 

volatilization of particulates, gas-particle reactions and particle-particle reactions 

(Kitto and Colbeck, 1999).   

Under changing temperature, relative humidity and acidity, unstable 

species, such as ammonium nitrate and ammonium chloride, may volatilize into 

their parent gases: 

NH4NO3(s)   NH3(g) + HNO3(g)     (Reaction 13) 

NH4Cl(s)    NH3(g) + HCl(g)     (Reaction 14) 
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 Gas-particle artifacts can form from the interaction of incoming reactive 

gases with pre-collected aerosols.  Examples of these types of interferences 

include: 

2 NH3(g) + H2SO4(aq)  (NH4)2SO4(aq,s)    (Reaction 15) 

2 HNO3(g) + CaCO3(aq,s)  Ca(NO3)2(aq,s) + H2O(g,aq) + CO2(g) (Reaction 16) 

HNO3(g) + NaCl(aq,s)  NaNO3(aq,s) + HCl(g)   (Reaction 17) 

 Particle-particle interactions may result in the loss of a species of interest.  

Examples of this type of reaction include: 

NH4NO3(s) + H2SO4(aq)    NH4HSO4(aq,s) + HNO3(g)   (Reaction 18) 

2 NaCl(aq,s) + H2SO4(aq)    2 HCl(g) + Na2SO4(aq,s)  (Reaction 19) 

 All of these processes can result in a sampling bias, over- or under-

estimation, of the measurements.  To minimize these effects, filter packs are 

often coupled with denuder samplers, which remove the reactive gas phase 

species prior to the filter pack.  Like the previous filter pack setup, multiple filters 

can be used in conjunction with denuders. 

 

Denuder Methods 

  

 In denuders, atmospheric gaseous components are removed from the 

airstream by diffusion to the walls of the instrument, leaving the particulate matter 

untouched.  There are several types of denuders including cylindrical, annular, 

honeycomb and others.  In this work, annular denuders were used.  These 

consisted of concentric etched glass tubes contained within a Teflon-coated 
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stainless steel cylindrical housing.  The walls of the denuders are coated with a 

solution designed to react with the species desired to be collected.  In order to be 

efficient, a denuder must maintain stable and laminar gas flow, have an infinitely 

large collection capacity with a large sink for the species, and not generate or 

destroy the species of interest inside the denuder (Kitto and Colbeck, 1999). 

 A typical configuration of an annular denuder system (ADS) includes an 

inlet, a series of coated denuders and a filter pack.  There are many types of 

inlets, including cyclones and elutriators, and they are generally Teflon-coated.  

When using a cyclone inlet in marine environments, the interior wall of the ADS 

cyclone may become coated by sea salt particles.  It has been found that sea salt 

aerosols react with acids in the atmosphere, such as H2SO4 and HNO3, forming 

sulfates and nitrates (Li-Jones et al., 2001).  The reaction between HNO3 and 

sea salts within the cyclone may result in a substantial loss of HNO3 (Appel et al., 

1988; Vossler et al., 1988).  This reaction leads to the misapportionment of both 

nitrate and chloride ions, as HCl is released into the vapor phase.  Under marine 

conditions, it has been suggested that the ADS be used with a different type of 

inlet device such as a small impactor (Li-Jones et al., 2001).  In an impactor, 

large sea salt particles will be deposited within a relatively small area on the 

impaction surface, making the area of sea salt exposed to the sample air stream 

smaller.  Because they were readily available, 2.5-µm Teflon-coated cyclones 

were chosen for the ADS assembly inlet device during the course of these 

experiments.  These cyclones were cleaned on a regular basis to prevent the 

buildup of sea salt. 
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 As mentioned, the walls of the denuders should be coated with solutions 

appropriate for the target species to be collected.  Typical species collected 

include HCl, HNO2, HNO3, SO2 and NH3.  The first four species are acidic and 

are easily collected using basic coating solutions.  Ammonia sampling uses 

acidic coating solutions.  The criteria for choosing the proper denuder coating 

are: (1) the coating must be very selective, (2) it must be a good sink for the 

species to be determined, (3) it must have high collection efficiency, and (4) it 

must be unreactive towards products resulting from the primary reaction between 

species and the coating layer (Perrino et al., 1990). 

In previous work, a coating solution of NaCl or NaF was used for the 

collection of HNO2 and HNO3 (Allegrini et al., 1987; Allegrini et al., 1994), with a 

collection efficiency for HNO3 greater than 97%.  There are several problems 

associated with using NaCl.  First, excess chloride from the coating solution in 

ion chromatography (IC) analysis can overwhelm the analytical column, creating 

a masking peak that invalidates the nitrite and nitrate analysis (from HNO2 and 

HNO3, respectively).  Second, when HNO3 reacts with NaCl, gaseous HCl is 

formed.  As a result, atmospheric HCl will be mixed with the coating solution 

reaction byproduct HCl and, therefore, cannot be quantified in a subsequent 

denuder in series.  Third, the collection efficiency for HNO2 on NaCl- and NaF-

coated denuders is poor.  It has been shown that HNO2 was almost entirely 

released from those denuders; only to be captured by the subsequent Na2CO3-

coated denuder (Perrino et al., 1990). 
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Na2CO3- and glycerol-coated (1% + 1% w/w in 50:50 methanol-water 

solution) denuders can be used for the collection of SO2, HNO2, HNO3 and HCl 

(Allegrini et al., 1987; Allegrini et al., 1994; Vossler et al., 1988).  Perrino et al. 

(2001) determined the collection efficiency for SO2 collection to be greater than 

99.9% of incoming SO2 with deposition of particulate SO4
2- at 0.5-2%.  

Breakthrough was tested using a second backup Na2CO3-coated denuder.  The 

backup denuder showed collection of less than 0.1% of SO2.  Na2CO3 has been 

proven to be a good sink for HNO2, with a removal constant near infinity.   

Difficulty arrives in the quantification of NO2
- (from HNO2) when collecting 

HNO3 on the same denuder.  HNO3 is collected and analyzed as NO3
-, whereas 

HNO2 is partially oxidized during sampling and is analyzed as both NO2
- and 

NO3
-.  Exposure to gaseous NO can cause an increase in NO2

- formation on the 

Na2CO3-coated denuders. This interferent amount can be taken into account by 

using the differential technique (Febo et al., 1989; Perrino et al., 1990). 

For these experiments, Na2CO3 was used as the basic denuder coating.  

Collection efficiencies have been determined to be greater than 99.5% for HCl, 

greater than 98.5% for HNO2, greater than 97% for HNO3 and greater than 99% 

for SO2 on Na2CO3-coated denuders (Allegrini et al., 1987; Perrino et al., 2001). 

Acid-coated denuders are used to determine ambient ammonia 

concentrations.  The following acids were considered: citric, oxalic, phosphoric 

and phosphorus.  The collection efficiencies of oxalic acid, citric acid and 

phosphorus acid (H3PO3) have been compared (Perrino and Gherardi, 1999).  

The data indicated the collection efficiencies of oxalic and phosphorus acid were 
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equivalent (>99%).  However, the efficiency of citric acid had great variation from 

the values that were expected for a perfect sink, with a negative bias of 

approximately 20% (McCulloch and Shendrikar, 2000).  Phosphorus and oxalic 

acids yielded very good reproducibility in determining ammonia.  The drawbacks 

of oxalic acid are its toxicity and desorbing potential.  Perrino and Gherardi 

(1999) found significant amounts of oxalate releasing from the denuder into the 

incoming air stream and displacing nitrate ion on the Teflon filter, causing an 

excess of nitrate ions on the backup filter. Their conclusion indicated that both 

oxalic and phosphorus acid proved to be suitable for ammonia determination, but 

only the latter is able to assure a correct determination of ammonium salts on the 

backup filter packs.  After direct discussion with Dr. Perrino, it has concluded that 

the performances of phosphoric and phosphorus acid are very similar.  In these 

experiments, both citric and phosphoric acid coating solutions were used. 

 

Cascade Impactors 

 

 Many instruments have been developed for the collection of PM10, 

particulate matter with an aerodynamic diameter less than 10 µm.  Cascade (or 

inertial) and virtual impactors are the methods of choice for collecting particles 10 

µm and smaller (Spurny, 1999).  Both devices size segregate particles based on 

their aerodynamic diameter.  The micro-orifice uniform deposit impactor (MOUDI) 

and Andersen Mark II sampler are examples of cascade impactors.  Virtual 
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impactors are used in instruments like the dichotomous or trichotomous sampler, 

where only two or three size fractions, respectively, are collected. 

 Impaction methods have been used for particle collection for quite some 

time.  In the early twentieth century, dust particles were collected through 

impaction to evaluate occupational environments (Hinds, 1999).  Since the 

1960s, cascade impactors have been developed to measure the particle size 

distributions.  The collected particle mass distributions were determined by 

weighing the impaction plates before and after sampling. 

 All cascade (or inertial) impactors are composed of two basic parts: an 

impaction nozzle and an impaction plate.  Together, they make up a collection 

stage.  Cascade impactors can have multiple stages, allowing for particles to be 

collected in multiple size bins.  The airstream enters the impactor through the 

impaction nozzle, or jet, which directs the airstream towards the flat impaction 

plate.  The plate is placed perpendicular to the airstream, deflecting the airflow to 

a near 90° bend (Figure 1).  Due to the inertia and size, some particles are 

unable to follow the bend in the airflow and collide or impact on the impaction 

plate, whereas the smaller particles follow the bend in the airstream and are not 

collected on the impaction plate.  As a result, the impactor separates particles by 

size.  The larger particles are removed from the airstream and collected on the 

impaction plates, leaving the smaller particles in the remainder of the airflow to 

be collected on latter stages. 
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Figure 1.  Cross-sectional view of an impactor stage (adapted from Hinds, 1999). 

 

 Impactors have been used in parallel to collect particles in multiple size 

bins.  However, this is uncommon due to the complexity of maintaining multiple 

flow rates required.  The use of impactors in series has been developed and is 

commonly practiced to collect multiple size bin particles.  Stages are arranged in 

order of decreasing cutoff diameters, collecting the largest particles first.  The 

device is referred to as a cascade impactor, with each separate unit called an 

impactor or collection stage.  The smaller particles are collected by continually 

decreasing the nozzle diameters, keeping the volumetric flow rate the same for 

all stages.  Each stage in a cascade impactor is fitted with a plate, and a final 

backup collection filter is placed at the exit of the instrument to collect those 

remaining particles. 

When in operation, each collection plate may be used as is, coated, or 

have a filter placed on top.  Uncoated plates are used for the collection of liquid 
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particles as they stick when impacted onto the collection plate.  Hard, solid 

particles have a tendency to bounce once impacted and end up collected in a 

lower stage.  To reduce particle bounce, impaction stages may be coated with a 

thin film of oil or grease.  Filters are used for the collection of both liquid and solid 

particles and are placed on top of the collection plate.  They are preferred 

because they minimize sample contamination by being easily removed and 

replaced without the requirement of thorough cleaning of each impaction plate.    

The Stokes number parameter, St, predicts whether a particle will impact 

or follow the airstream out of the impaction region (Hinds, 1999; Marple et al., 

1991).  The Stokes number can be defined as: 

W
DVC

St pop

µ
ρ

9

2

=        (Equation 6) 

where ρp is the particle density, C is the slip correction factor (also known as the 

Cunningham correction factor, Cc), Vo is the average air velocity at the nozzle, Dp 

is the particle diameter, µ is the air viscosity, and W is the nozzle diameter.  Vo 

can be determined using: 

2
4
W
qVo π

=          (Equation 7) 

where q is the volumetric flow rate through the nozzle.  The Stokes number is the 

primary parameter that governs the size of particles collected in an inertial 

impactor.   

 Each collection stage in a cascade impactor has a cut point diameter, in 

which 50% of the particles greater than a certain size are collected and those 

smaller continue with the airstream.  The Stokes number is used to characterize 
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the collection efficiency of each impaction stage (Hinds, 1999).  The cut points for 

each impaction plate are defined by the particle diameter that is collected with 

50% efficiency, Dp50.   

5050

9 St
VC

WD
op

p ρ
µ

=       (Equation 8) 

where 50St  is the dimensionless particle size defining the value of 

St corresponding to Dp50 (Hinds, 1999).   

 Particle concentrations collected using a cascade impactor are calculated 

by dividing the mass collected by the volume of air sampled. 

total

iStg
iStg Volume

Mass
PM

)(
)( =       (Equation 9) 

where PMStg(i) (µg m-3) is the particulate concentration from stage (i) of the 

impactor, MassStg(i) (µg) is the mass collected and Volumetotal (m-3) is the volume 

of air through the impactor. 

 

Virtual Impactors 

 

 Virtual impactors are used in the dichotomous sampler to separate 

particles into two size fractions.  Unlike a traditional impactor, particles are 

collected on filters the air is drawn through, instead of impacting on a plate.  

Ambient air is drawn through the virtual impactor and is split into major and minor 

airstreams.  During typical operation of a dichotomous sampler, the total flow rate 
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is 16.7 L min-1, with respective 15.0 and 1.67 L min-1 directed onto the PM2.5 and 

PM10-2.5 filters. 

 Particles are separated in a similar fashion to that of a traditional impactor.  

Larger particles, those with enough inertia, are drawn into a collection probe and 

are carried by the minor flow.  Smaller particles are carried away from the nozzle 

and continue with the major flow stream.  All particles are collected onto a filter 

through which the air flows.  Due to the complexity of controlling multiple more 

airflows, virtual impactors are used for the collection of one or two stages.  A 

trichotomous sampler has been developed using virtual impactors, allowing the 

collection of particles in three size bins. 

 The traditional cutpoint for a dichotomous sampler is 2.5 µm, naming the 

collective PM2.5 bin “fine” and the PM10-2.5 bin “coarse”.  PM2.5 concentrations can 

be calculated using 

5.2

5.2
5.2 Volume

MassPM =        (Equation 10) 

where PM2.5 (µg m-3) is the concentration of particulate matter, Mass2.5 (µg) is the 

collected mass and Volume2.5 (m-3) is the volume of air (Poor et al., 2002).  The 

PM10-2.5 concentrations are calculated using 

totaltotal Volume
Volume

PM
Volume
Mass

PM 5.210
5.2

5.210
5.210

−−
− −=    (Equation 11) 

where PM10-2.5 (µg m-3) is the concentration of particulate matter, Mass10-2.5 (µg) 

is the collected mass and Volumetotal and Volume10-2.5 (m-3) are the volumes of air 

(Poor et al., 2002).  This equation serves to correct for the PM2.5 collected on the 

PM10-2.5 filter. 
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Models 

 

 Models are tools used to “provide the necessary framework for integration 

of our understanding of individual atmospheric processes and study of their 

interactions” (Seinfeld and Pandis, 1998).  Models are needed because of the 

complexity of the atmosphere, with numerous processes occurring 

simultaneously.  Atmospheric sampling provides a “snapshot of atmospheric 

conditions at a particular time and location” (Seinfeld and Pandis, 1998) and 

helps identify the state of the atmosphere.  Models are used to extend our 

snapshot to understand processes on a local or regional scale. 

 Thermodynamic models have been developed over the past twenty years 

using thermodynamic equilibrium principles to predict the composition and 

physical state of atmospheric aerosols.  The basis for these models is the 

assumption that gas and aerosol volatile species are in equilibrium (Ansari and 

Pandis, 1999; Bassett and Seinfeld, 1983; Pilinis and Seinfeld, 1987; Stelson and 

Seinfeld, 1982).  Current thermodynamic equilibrium models include EQUIL 

(Bassett and Seinfeld, 1983), KEQUIL (Bassett and Seinfeld, 1984), MARS 

(Saxena et al., 1986), SEQULIB (Pilinis and Seinfeld, 1987), AIM (Wexler and 

Seinfeld, 1991), SCAPE (Kim et al., 1993a; Kim et al., 1993b), SCAPE2 (Kim and 

Seinfeld, 1995; Meng et al., 1995), MARS-A (Binkowski and Shankar, 1995), 

EQUISOLV (Jacobson et al., 1996), AIM2 (Clegg et al., 1998), ISORROPRIA 

(Nenes et al., 1998), GFEMN (Ansari and Pandis, 1999) and EQUISOLV II 

(Jacobson, 1999a).  During the development of many of these models, 
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maintaining computer efficiency was a primary endeavor.  As a result, 

assumptions were made to simplify problems and allow the use of these 

equilibrium models in atmospheric chemical transport models (Ansari and 

Pandis, 1999). 

Most of these equilibrium models solve for equilibrium using the iterative 

Gibbs free energy minimization method (Jacobson, 1999a).  The following table 

taken from Jacobson 1999 summarizes the equilibrium models, the system 

solved and their solution method. 
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Model Name Reference System Solved Solution Method 
AIM Wexler and Seinfeld 

(1991) 
NH4

+-Na+-NO3
--SO4

2--Cl- Iterative Gibbs free energy 
minimization method 

AIM2 Clegg et al. (1998) NH4
+-Na+-NO3

--SO4
2--Cl- Iterative Gibbs free energy 

minimization method 
EQUIL Bassett and Seinfeld 

(1983) 
NH4

+-NO3
--SO4

2- Iterative Gibbs free energy 
minimization method 

EQUISOLV Jacobson et al. (1996) NH4
+-Na+-NO3

--SO4
2--Cl- Mass-flux iteration method 

EQUISOLV II Jacobson (1999a) NH4
+-Na+-NO3

--SO4
2--Cl--

Ca2+-Mg2+-K+-CO3
2- 

Analytical equilibrium iteration + 
mass-flux iteration 

GFEMN Ansari and Pandis 
(1999) 

NH4
+-Na+-NO3

--SO4
2--Cl- Iterative Gibbs free energy 

minimization method 
ISORROPRIA Nenes et al. (1999) NH4

+-Na+-NO3
--SO4

2--Cl- Iterative bisection + bisection-
Newton for H+ 

KEQUIL Bassett and Seinfeld 
(1984) 

NH4
+-NO3

--SO4
2- Iterative Gibbs free energy 

minimization method 
MARS Saxena et al. (1986) NH4

+-NO3
--SO4

2- Iterative Newton-Raphson method
MARS-A Binkowski and 

Shankar (1995) 
NH4

+-NO3
--SO4

2- Iterative Newton-Raphson method

SCAPE  Kim et al. (1993) NH4
+-Na+-NO3

--SO4
2--Cl- Iterative bisection + bisection-

Newton for H+ 
SCAPE2 Kim and Seinfeld 

(1995), Meng et al. 
(1995) 

NH4
+-Na+-NO3

--SO4
2--Cl--

Ca2+-Mg2+-K+-CO3
2- 

Iterative bisection method 

SEQUILIB Pilinis and Seinfeld 
(1987) 

NH4
+-Na+-NO3

--SO4
2--Cl- Iterative bisection method 

    
Table 2.  Equilibrium models, species treated and numerical method used to 

solve equilibrium (Jacobson, 1999a). 

 

 The primary thermodynamic equilibrium model used throughout this work 

was the EQUISOLV II (Jacobson, 1999a), which solves for thermodynamic 

equilibrium through analytical equilibrium iterations and mass flux iterations.  The 

model can be used over a range of temperatures as it corrects equilibrium 

constants, deliquescent relative humidities and activity coefficients for 
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temperature dependence.  This model is very versatile as it can be used for 

NH4
+, Na+, NO3

-, SO4
2-, Cl-, Ca2+, Mg2+, K+ and CO3

2- systems. 

 The Aerosol Inorganics Model (AIM2 - Model III) (Clegg et al., 1998) was 

used for model comparison.  AIM2 solves for thermodynamic equilibrium by 

minimizing the Gibbs free energy of the system through the use of sequential 

quadratic programming algorithms.  This model is limited to a single particle bin, 

NH4
+, Na+, NO3

-, SO4
2- and Cl- systems and 25°C environments. 

 

Kinetics 

 

Heterogeneous Reactions 

 

 Heterogeneous chemical reactions are those occurring between gases 

and either solids or liquids in the atmosphere (Finlayson-Pitts and Pitts Jr., 2000).  

These reactions occur on many different types of surfaces including ice crystals, 

liquid aerosols, sea salts, soot, metal oxides, clouds and surface waters as well 

as a number of other surface types (Kolb et al., 1995). 

 There are a few common terms used to describe heterogeneous 

reactions.  The surface reaction probability ( )rxnγ  is the fraction of collisions 

between the gas and condensed phases that leads to the irreversible uptake of 

the gaseous species due to chemical reaction.  rxnγ  is also known as the reaction 

probability.  The mass accommodation coefficient ( )α  is the fraction of collisions 

between the gas and condensed phases that result in the uptake of the gaseous 
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species by the condensed phase.  It is the fundamental parameter that measures 

the rate at which molecules cross the interface between the gas and condensed 

phases (Kolb et al., 1995).  The mass accommodation coefficient is not the net 

uptake because it does not include the reversible effect of evaporation of the 

gaseous species from the condensed phase; however, it determines the 

maximum rate of mass transport.  α  is also referred to as the sticking coefficient 

for the uptake on solid surfaces.  The overall or net uptake probability ( )netγ  is the 

net rate of uptake normalized to the rate of collisions.  When determining uptake 

coefficients experimentally ( )measuredγ , netmeasured γγ =  (Finlayson-Pitts and Pitts Jr., 

2000). 

 Several types of instrumentation have been used to experimentally 

determine heterogeneous chemistry kinetics.  The most common instrumentation 

is the Knudsen cell (Caloz et al., 1997; Fenter et al., 1997; Finlayson-Pitts and 

Pitts Jr., 2000).  It has been used over the last 30 years for kinetic measurements 

of both homogeneous and heterogeneous systems.  According to Caloz et al. 

(1997), the technique is well adapted for heterogeneous reactions because the 

reactant interacts with the substrate without boundary layer effects and because 

the collision frequency between the gaseous reactant and substrate can be 

accurately determined.  The Knudsen cell is comprised of a chamber containing 

a reactive surface through which the reactant gas is allowed to pass.  It is 

typically coupled with a mass spectrometer, which detects the gas phase 

concentration.  The condensed phase is loaded on a sample plate, which is 

either placed in a separate chamber or covered with a lid, depending if the 



www.manaraa.com

 

36 

Knudsen cell is dual or single chambered.  The reactant gas enters the cell 

through a valve where it evenly disperses.  The gas is often allowed to flow 

through the system prior to exposure to the condensed phase for some time to 

minimize loss of the reactant gas to the cell walls.  When the reactant gas is 

exposed to the condensed phase, the surface takes up the gas reducing the 

concentration of the gas in the cell.  This change in gas concentration is detected 

by the mass spectrometer, allowing the net uptake of the gas by the surface to 

be determined.  

 The major limitation for Knudsen cells is that they are operated at low 

pressures (<10 mTorr) to increase the mean free path of the gas molecules 

(Davies and Cox, 1998; Finlayson-Pitts and Pitts Jr., 2000).  Reactions can be 

studied only under dry and very low relative humidity conditions.  This limits 

environmental applications, as the humidity in coastal areas is often greater than 

60%. 

 Other types of instrumentation have been developed which are not limited 

to low relative humidity conditions.  The aerosol flow tube has been used to 

determine rate constants for gas-phase reactions (Finlayson-Pitts and Pitts Jr., 

2000), and it has been recently adapted to study heterogeneous reactions 

(Abbatt and Washewsky, 1998; Hu and Abbatt, 1997). 

 The aerosol flow tube can be used in one of two ways.  The walls of the 

flow tube can be coated with the condensed phase of interest.  However, it is 

often difficult to coat the walls of the flow tube.  In the second method, the 

condensed phase is generated as an aerosol that can be aqueous or solid and 
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passed through the flow tube along with the reactant gas phase.  The exit orifice 

of the flow tube is connected to a detection device, which is typically a mass 

spectrometer.  The exiting gas is analyzed in a similar fashion to that in a 

Knudsen cell apparatus.  The aerosol flow reactor is not constrained to low 

pressure, and it is very versatile for a wide range of relative humidity conditions.   

  

Sea Salt 

 

 Understanding the kinetics behind the uptake of nitric acid by sea salt is 

essential in modeling the gas phase nitric acid to particulate nitrate conversion 

and its effects on nitrogen deposition.  Past studies have focused on determining 

the uptake of nitric acid by NaCl, a major component of sea salt (77% w/w) 

(Beichert and Finlayson-Pitts, 1996; De Haan and Finlayson-Pitts, 1997; Ghosal 

and Hemminger, 1999; Zangmeister and Pemberton, 1998; Zangmeister and 

Pemberton, 2001).  However, other research has suggested that the reaction 

probabilities, the fractional loss of a species from the gas phase due to reaction 

with a surface (Jacobson, 1999b), for sea salt are at least an order of magnitude 

faster than those for sodium chloride.  Other measurements have suggested that 

NaCl may not be the most reactive component of sea salt (De Haan and 

Finlayson-Pitts, 1997; Langer et al., 1997) 

 Under most marine conditions, sea salt is present in the form of 

deliquescent aerosol particles (Guimbaud et al., 2002a).  However, the majority 

of laboratory studies investigating the kinetics behind the HNO3 and sea salt 
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interaction were performed on solid crystals or thin films at low relative humidity 

conditions.  A model describing the step-by-step process of the uptake of nitric 

acid and conversion to nitrate has been proposed (Laskin et al., 2002).  HNO3 

and other nitrogen oxide gases are first taken up into the surface adsorbed water 

of a sea salt particle.  Even at conditions well below the deliquescent point at 

ambient temperature, NaCl (and sea salt) has significant amounts of adsorbed 

water on its surface, which is associated with its steps, edges and defect sites 

(Beichert and Finlayson-Pitts, 1996; Davies and Cox, 1998; Finlayson-Pitts and 

Hemminger, 2000).  Nitric acid dissolves and remains inactive until the particle 

becomes significantly acidified.  This happens by the further uptake of acids or 

the drying of the particle.  As it dries, the particle becomes more concentrated in 

all components, including acids.  When the acidity reaches ~pH 1.7, HCl begins 

to degas, NaNO3 precipitates and additional HNO3 is taken up (Beichert and 

Finlayson-Pitts, 1996; Finlayson-Pitts and Hemminger, 2000).  A thermodynamic 

model (Clegg et al., 1998) predicts that HCl evaporates faster than HNO3, leaving 

the dried particles deficient in chloride rather than nitrate. 

 The reaction between HNO3 and NaCl has been widely studied (Beichert 

and Finlayson-Pitts, 1996; Finlayson-Pitts and Hemminger, 2000; Langer et al., 

1997; Ten Brink, 1998; Vogt and Finlayson-Pitts, 1994; Zangmeister and 

Pemberton, 1998).  NaCl is a hygroscopic salt; its deliquescent relative humidity 

(DRH) is 75% (Seinfeld and Pandis, 1998).  Below the deliquescent point, the 

aerosol exists as a metastable supersaturated liquid droplet until the 

efflorescence point, or crystallization relative humidity, is reached (~37% RH), at 
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which point the salt begins to crystallize (Davies and Cox, 1998).  Studies have 

been done at different relative humidities to determine the effect of water on the 

HNO3 absorption.  At 30% relative humidity, dry aerosol NaCl was reacted with 

gaseous HNO3.  Reaction analysis revealed the absence of measurable 

substitution of chloride by nitrate, providing evidence that HNO3 does not react 

with dry NaCl (Ten Brink, 1998).  However, this absence of nitrate detection does 

not provide enough evidence to exclude the possibility of a small surface 

interaction of HNO3 with NaCl (Ten Brink, 1998; Vogt et al., 1996).  It is possible 

that the detection limits were too high at the time of experimentation.  The 

experiment was repeated at 80% relative humidity, and it resulted in a substantial 

amount of nitrate formation (Ten Brink, 1998).  The experiment was repeated 

again, this time at 50% RH (below the 75% DRH of NaCl).  The formation of 

nitrate was observed, contradicting the results reported at 30% RH.  After further 

analysis, it was concluded that these particles were formed from NaCl droplets 

that were “dried”.  The aerosols, in actuality, were not thoroughly “dry” aerosols 

but supersaturated droplets due to the hysteresis effect of aerosol water 

(Seinfeld and Pandis, 1998; Tang, 1980). 

 Evidence suggests that the reaction probability significantly increases with 

the presence of adsorbed surface water (Beichert and Finlayson-Pitts, 1996; 

Langer et al., 1997).  The water layers create a quasi-liquid layer allowing the 

surface molecules to deliquesce and increase ionic mobility.  This greatly 

facilitates the uptake and reaction of HNO3 with the NaCl solution (Zangmeister 

and Pemberton, 1998).  NaNO3 is formed on the surface of the salt particle.  
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Without the further uptake of additional water molecules, the reaction rate of 

additional NaNO3 formation is greatly decreased or stops due to the formation of 

a protective layer or film on the particle’s surface (Allen et al., 1996).  Upon the 

exposure to increased relative humidity, the particle adsorbs additional water 

molecules, increasing the ionic (nitrate) mobility (Finlayson-Pitts and Hemminger, 

2000).  The components of the particle are then allowed to rearrange, 

regenerating the NaCl reactive surface.  A two-step model has been developed 

representing this process: 

HNO3(g) + NaClsite    NO3
-
(ads) + HCl(g)    (Reaction 20) 

NO3
-
(ads) + H2O(l)   NaClsite + NaNO3(s)    (Reaction 21) 

where NaClsite is the unreacted surface site and NO3
-
(ads) is the newly formed 

immobile NaNO3 that is blocking the NaCl reactive site (Finlayson-Pitts and 

Hemminger, 2000; Ghosal and Hemminger, 1999). 

 The availability of surface waters on NaCl appears to govern the uptake of 

HNO3 (Beichert and Finlayson-Pitts, 1996; De Haan and Finlayson-Pitts, 1997; 

Ten Brink, 1998).  Beichert (1996) did not observe the uptake of HNO3 on single 

crystals.  He proposed the explanation that a single crystal is relatively free of 

defects and does not readily hold adsorbed water.  The measured dry HNO3 

uptake by a NaCl single crystal was approximately two orders of magnitude less 

than that on finely ground NaCl powders. 

 The uptake coefficient for a given reaction is the probability that a 

molecule is removed from the gas phase upon colliding with a particle surface 

(Guimbaud et al., 2002a).  It is “simply a measure of how likely the molecule will 
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be taken up by the surface, through either adsorption or reaction, on a per 

collision basis” (Grassian, 2002). 

 The uptake coefficients for gaseous HNO3 on NaCl and sea salt have 

been determined experimentally.  For NaCl, the uptake coefficient was 

characterized by the value of 2.0>γ  (Abbatt and Washewsky, 1998).  This value 

was determined using the aerosol kinetics flow tube technique at room 

temperature with deliquescent NaCl at 75% relative humidity.  The rate of uptake 

was determined to be independent of particle size for deliquescent particles 

(Guimbaud et al., 2002b; Ten Brink, 1998).  Abbatt and Waschewsky (1998) 

report that this elevated uptake coefficient is driven by the very high solubility of 

HNO3 in aqueous salt solution but limited by the gas-diffusion rate. 

 Other uptake coefficients for HNO3 on NaCl have been reported, ranging 

from 10-4 to 10-2, depending on the amount of water on the salt surface (Abbatt 

and Washewsky, 1998; Beichert and Finlayson-Pitts, 1996; Fenter et al., 1994; 

Laux et al., 1994; Vogt and Finlayson-Pitts, 1994).  Low-pressure Knudsen cell 

flow reactors are other tools used to determine heterogeneous kinetics of these 

types of interactions.  However, the Knudsen cell flow reactor is limited to very 

low relative humidity conditions (Davies and Cox, 1998).  Beichert and Finlayson-

Pitts (1996) determined a constant steady-state uptake of ( ) 2106.04.1 −×±=γ  for 

particles 0.5 and 4 µm at room temperature.  Fenter et al. (1994) determined a 

value of ( ) 2103.08.2 −×±=γ .   
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 The value determined by Abbatt and Waschewsky (1998) was used in the 

modeling and is considered a lower limit for the uptake of HNO3 by NaCl as the 

average relative humidity for the Tampa Bay coastal area is approximately 80%. 

 For sea salt, the uptake coefficient was estimated to be 20.050.0 ±=γ  for 

deliquescent sea salt at 55% relative humidity (Guimbaud et al., 2002a).  This 

value was also determined using an aerosol flow tube technique.  The difference 

between the coefficients for sea salt (which is primarily NaCl) and NaCl lie in the 

composition of sea salt.  Sea salt contains hygroscopic hydrates, such as 

MgCl2•6H2O, which provide additional surface waters for the uptake and reaction 

of HNO3 (De Haan and Finlayson-Pitts, 1997).   

 Other uptake coefficient values for HNO3 on sea salt have been reported.  

Knudsen cell flow reactor studies resulted in a steady-state HNO3 uptake rate of 

2.0≅γ (De Haan and Finlayson-Pitts, 1997). 

 

Mineral Dust 

 

 The irreversible reactions between nitrogen oxides and mineral dust 

surfaces have been investigated (Dentener et al., 1996; Grassian, 2002).  The 

research indicated that mineral dust aerosols provide an important sink for HNO3 

(Goodman et al., 2000), and these particles may have a significant impact on the 

chemistry of the troposphere (Dentener et al., 1996).  Mineral aerosols are 

composed of metallic and nonmetallic oxides, silicates and carbonates.  
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Carbonates are of special interest as they may be especially effective in 

removing gaseous HNO3 from the atmosphere (Reaction 3). 

 Grassian (2002) studied the uptake of gaseous HNO3 by CaCO3 using in 

situ FTIR spectroscopic methods.  Her results indicate the dependence of water 

vapor on the HNO3 uptake.  Under dry conditions, exposure of CaCO3 to HNO3 

resulted in very little changes to the solid particle.  However, when the CaCO3 

particle was exposed to HNO3 in the presence of 20% relative humidity, several 

changes were noted.  Spectral absorption bands indicated the presence of the 

formation of Ca(NO3)2, the formation of gas-phase CO2 and the presence of OH 

stretching vibrations from the adsorbed water.  The quantity of adsorbed water 

increased with the increased Ca(NO3)2 formation.  This is related to the solubility 

and hygroscopicity of the particle; calcium nitrate is more hygroscopic and 

approximately 100 times more soluble than calcium carbonate (Lide, 1991).  The 

formation of Ca(NO3)2 allows more water to adsorb onto the particle surface. 

 Morphological studies of the surface of the calcium carbonate particles 

have been conducted using transmission electron microscopy.  Unreacted 

calcium carbonate particles have a smooth shape.  However, those particles 

exposed to nitric acid at 20% RH had irregular shape with jagged edges.  

Smooth CaCO3 particles were seen to become more irregular with increased 

exposure to nitric acid.  The jagged edges also resulted in an increase in the 

surface area of the particle.  Similar studies were conducted using NaCl crystals.  

Upon exposure to HNO3, the micrographs indicated a physical change in 
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morphology indicating the formation of NaNO3 (Allen et al., 1996; Allen et al., 

1998; Grassian, 2002). 

 Due to the presence of water vapor and the particle’s ability to adsorb 

water, the reaction between nitric acid and carbonaceous mineral dust particles 

is not limited to the surface but can continue within the bulk of the particle 

(Goodman et al., 2000; Grassian, 2002).  The adsorbed water is thought to be 

involved with the subsequent reactivity of the particle.  This uptake of nitric acid 

and formation of Ca(NO3)2 has been found to be irreversible. 

 For CaCO3, the uptake coefficients have been determined under a few 

different conditions (Goodman et al., 2000; Grassian, 2002; Hanisch and 

Crowley, 2001).  At 0% and 20% relative humidities, they were estimated to be 

4104.2 −×=γ  and 3105.2 −×=γ , respectively (Goodman et al., 2000; Grassian, 

2002).  Hanisch and Crowley determined the uptake coefficients for “dry” heated 

and “damp” unheated CaCO3 to be ( ) 2105.210 −×±=γ  and ( ) 2105.418 −×±=γ , 

respectively.  The value estimated under “damp” conditions by Hanisch and 

Crowley (2001) is thought to be more relevant under atmospheric conditions.  

Their reported value is considered a lower limit for the uptake of HNO3 by 

CaCO3. 
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Statement of the Problem 

 

 The atmospheric deposition of nitrogen has had a detrimental 

environmental impact on the water quality and biodiversity in Tampa Bay as well 

as other regions around the world.  Nitrogen is deposited through wet and dry 

deposition processes in the form of both gaseous and particulate species.  The 

dominant nitrogen-containing gaseous forms include nitric acid and ammonia; 

nitrate and ammonium are the dominant particulate species.  

 In the Tampa Bay area, gaseous ammonia and nitric acid and fine particle 

ammonium and nitrate (less than 2.5 µm in diameter) have been monitored since 

1996.  Research in coastal regions, however, has revealed the dominance of 

nitrate in the coarse mode (greater than 2.5 µm).  By virtue of their increased 

mass, the coarse particles may have a greater local environmental impact than 

the fine particles as they have greater deposition velocities and shorter residence 

times. 

 The purpose of this study was to investigate the formation of particulate 

nitrate species in a coastal urban environment through the use of ambient 

monitoring and modeling.  The goals of this study were: 

• To characterize ambient air nitrate concentrations and particle size 

distributions through a network of sampling campaigns  
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• To determine the retention of nitric acid by nylon filters 

• To determine the spatial distribution of particles along an air mass trajectory 

• To evaluate the use of a thermodynamic equilibrium model for predicting 

ambient aerosol phases and concentrations 

• To expand the current data set (from 1996 to the present) to account for 

coarse mode nitrate formation and its contribution to the local nitrogen 

deposition estimates 

• To determine if macroparticles, those with a diameter greater than 10 µm, 

contain nitrogen 

• To determine the partitioning of nitric acid gas to particles nitrate by NaCl 

and CaCO3 (mineral dust) 

• To model the formation of particulate nitrate on NaCl, sea salt and mineral 

dust particles, with a focus on macroparticle formation, and to determine the 

environmental implications 

 This knowledge will be useful in developing more accurate estimates of 

the atmospheric contribution of nitrogen to Tampa Bay.  The need and 

importance of coarse particle nitrate monitoring will be addressed as well as the 

chemistry behind the formation of these particles. 
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Methods and Experimental 

 

Instrumentation 

 

Cascade Impactors 

 

 Two sampling systems were used throughout these experiments to collect 

size-segregated particulate matter.  The Andersen impactor (Mark-II Cascade 

Impactor, Thermo Andersen) had eight fractionated stages with nominal cut-

points of 10, 9.0, 5.8, 4.7, 3.3, 2.1, 1.1, 0.7, 0.4 µm and a backup filter.  The flow 

rate was factory set at 28.3 L min-1 and was verified using a dry gas meter.  

Custom-cut 81-mm quartz filters (Pall Gelman Sciences) were used as the 

collection media.  Quartz was chosen for its low SO2 absorption (Batterman et 

al., 1997) and low blank analyte concentrations.   

 Four different non-rotating Micro-Orifice Uniform Deposit Impactors 

(MOUDI™, MSP Corporation) (Marple et al., 1991) were used during May 2002.  

Two MOUDIs (MDI-242 and MDI-245) had ten fractionated stages with nominal 

cut-points of 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, 0.056 µm and a 

backup filter.  One MOUDI (MDI-020) had eight fractionated stages with nominal 

cut-points of 18, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, 0.056 µm and a backup 
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filter.  Nominal cut-points for the MDI-079 MOUDI were 18, 10, 5.6, 3.2, 1.8, 1.0, 

0.56, 0.32, 0.18 µm and a backup filter.  Each MOUDI was equipped with Pall 

Gelman Sciences Teflo™ PTFE membrane filters.  To prevent an excess 

pressure drop, 2-µm pore size filters were used for all backup filters.  The flow 

rate for the MOUDIs was set at 30 L min-1 and was verified using a dry gas 

meter.  Teflo filters were chosen for their low blank analyte concentrations and 

their inertness towards the species of interest. 

 

Annular Denuder System 

  

The annular denuder system (ADS) consisted of (a) a Teflon-coated 

cyclone inlet to remove particles 2.5 µm or greater in diameter, (b) annular 

denuders to quantitate acidic and basic gases, and (c) a filter pack for particle 

collection.  The denuders are a series of concentric glass tubes that have been 

etched and coated with chemicals to adsorb gaseous species of interest.  During 

operation, ambient air is drawn in through the cyclone, passed through the 

denuders, and then filtered.  The filter pack typically held a single Teflon PTFE or 

Nylasorb® nylon membrane filter.  A series of filters or impregnated filters may be 

used to collect species that may have volatilized off the denuders of preceding 

filters. 

 A typical deployment setup for the ADS included (a) a denuder housing, to 

protect the ADS from the harsh elements, (b) rigid air tubing, to prevent the line 

from collapsing, and (c) a pump, typically encased in a weatherproof housing.  
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Flow rates can vary from system to system depending on the type of equipment 

purchased.  In these experiments, the flow rate was set at 10 L min-1.  The flow 

rate was checked using a dry gas meter.  

 

Dichotomous Sampler 

 

 The Rupprecht and Patashnick Partisol®-Plus Dichotomous Model 2025 

Sequential Air Sampler was an automated monitoring device allowing for the 

collection of PM2.5 and PM10-2.5 (Poor et al., 2002).  The PM2.5 and PM10-2.5 

fractions are termed the “fine” and “coarse” particulate matter fractions, 

respectively.  The combined flow rate for the instrument was 16.7 L min-1, which 

was split, directing 15.0 L min-1 and 1.7 L min-1 of ambient air onto the fine and 

coarse filters, respectively.  The inlet apparatus was approximately 2.5 meters 

above ground level.  Samples were collected using Whatman® PTFE 46.2-mm 

filters, integrating over 24 hours. 

 

Total Suspended Particulate Collection 

 

 An inverted filter pack from URG Corporation was used to collect total 

suspended particulate matter (TSP) to determine the concentration of 

macroparticles (greater than 10 µm in diameter).  The filter pack was attached to 

a burette stand and placed on a platform, with the inlet approximately 2.5 m 

above the ground.  The ambient airflow was 28.3 L min-1, sufficient to collect 
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particles up to approximately 80 µm in diameter.  Samples were collected daily 

on Whatman 46.2-mm PTFE filters, integrating over 24 hours. 

 

Filters 

 

 Several different types of filters were used during the course of the 

experiments.  The instrumentation limited the size of filters required for sample 

collection, and the types of experiment governed the type of filter used.  The 

dichotomous, macroparticle and MOUDI samplers used 47-mm filter media, 

where the filter media included: Pall Gelman Sciences Nylasorb membrane, 

Whatman PTFE and Teflo filters.  The PTFE filters were inert towards the 

species of interest and had the advantage of low HNO3 adsorption, hence the 

minimization of nitrate bias.  Nylasorb membrane filters were used to prevent 

volatilization and loss of particles.  The Andersen cascade impactor used custom 

cut 81-mm quartz fiber filters, purchased from Pall Gelman Sciences.   

 Due to the presence of background analytes, lab blanks were used to 

correct for background concentration.  Field and trip blanks were also collected 

for all media types. 

 Because the nature of environmental work is similar to trace analysis, 

filters and equipment were treated with special care to avoid contamination.  

While working with the instrumentation and filters, powderless gloves were worn 

and clean tweezers were used.  All equipment and glassware were washed, 

double rinsed in deionized water and allowed to air dry. 
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Filter Extraction 

 

 Filters were removed from the sampling apparatus using tweezers while 

wearing powderless gloves.  Filters were placed into 15-mL centrifuge tubes, and 

5-15 mL of >18 MΩ-cm deionized water was added.  The volume of water 

depended on the type and size of filter to be extracted.  For 47-mm Nylasorb and 

Teflon PTFE filters prior to May 2002, 10.0 mL of deionized water was used.  For 

81-mm quartz filters, 15.0 mL of deionized water was used.  For all MOUDI 

samples collected during May 2002, 5.0 mL of deionized water was used.  

Smaller aliquots of water were used to lower detection limits during specified 

sampling events. 

 The deionized water was added to the centrifuge tubes using a calibrated 

pipettor.  The filters were then sonicated for 45 min.  The extract was decanted 

into vials for ion chromatography analysis, leaving ~0.5 mL for pH analysis.  If 

samples were not analyzed that day, they were stored at 4°C until analysis. 
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Denuder Preparation and Extraction 

 

Preparation 

 

 The denuder coatings chosen for these experiments were sodium 

carbonate (Na2CO3) and either citric (C6H8O7) or phosphoric (H3PO4) acid.  A 

Na2CO3 coating removes acidic atmospheric gases, such as HCl, HNO2, HNO3 

and SO2 (Allegrini et al., 1994).  Citric and phosphoric acids capture ammonia 

(Allegrini et al., 1994).   

Alkaline denuders were coated with Na2CO3 and glycerol (1% + 1% w/w) 

in a 50:50 v/v water-methanol solution (Allegrini et al., 1987; Allegrini et al., 1994; 

Vossler et al., 1988).  Collection efficiencies were determined to be >99.5% for 

HCl, >98.5% for HNO2, >97% for HNO3 and >99% for SO2 (Allegrini et al., 1987; 

Perrino et al., 2001). 

Acidic denuders were coated with either citric or phosphoric acid (1% w/v) 

in an 80% v/v methanol solution (Allegrini et al., 1994).  The collection efficiency 

for ammonia was determined to be >99% with negligible deposition of particulate 

NH4
+ (Allegrini et al., 1987; Perrino et al., 2001; Vossler et al., 1988). 

Prior to coating, each denuder was rinsed with deionized water for one 

minute followed by approximately 5 mL of the coating solution.  The coating 

solution was then decanted and the denuder filled with ~10 mL of the fresh 

coating solution.  The denuder was shaken or placed on a rotating table for 10 

min.  The solution was then decanted, and the denuders were dried using either 
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filtered compressed air or zero air (Vossler et al., 1988).  The compressed air 

was filtered through silica gel, activated carbon and acid-coated glass beads.  

The acid coating was used on the beads to capture any ammonia. 

 

Extraction 

 

 Denuders were extracted using 10.0 mL of >18 MΩ-cm deionized water.  

Denuders were capped and either shaken or placed on a rotating table for 10 

min.  The extract was decanted into vials for analysis by ion chromatography. 

 The filters from the ADS filter pack were removed using tweezers and 

placed into 15 mL centrifuge tubes.  10.0 mL of >18 MΩ-cm deionized water was 

added to each tube, which were then capped and sonicated for 30 min (Vossler 

et al., 1988).  An aliquot of the filter extract was taken for pH analysis.  The 

remainder was filtered using a Pall Gelman Sciences 0.45 µm syringe tip filter 

and placed into vials for analysis by ion chromatography.  Lab blanks were used 

to correct for background concentrations. 

 

Sample Analysis 

 

Ion Chromatography Analysis 

 

 Prior to June 2001, samples were analyzed using a Dionex 2000i ion 

chromatograph.  After June 2001, samples were analyzed using a Dionex DX-
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600 ion chromatograph.  In both systems, cations (Na+, NH4
+, K+, Mg2+ and Ca2+) 

were analyzed using CS12G guard and CS12A analytical columns.  Prior to June 

2001, anions (F-, Cl-, NO2
-, NO3

-, PO4
3- and SO4

2-) were analyzed using AS4G 

guard and AS4A analytical columns.  Post June 2001, AS14G and AS14A 

columns separated the anions.  For both cations and anions, isocratic elution and 

self-regenerating suppressors were used. 

 Calibration curves were used to determine the concentration of each 

analyte.  Curves were created using external standards from SPEX 

CERTIPREP®.  Three check standards were run for every ten samples for 

verification.  These standards were prepared from a separate batch of standards 

from which the curves were run. 

 

pH Analysis  

 

 pH of samples was taken using an Accumet® AR50 pH meter fitted with a 

Thermo Orion pH probe.  The pH meter was calibrated using four points: 4.00, 

5.00, 6.00 and 7.00.  Prior to analysis, samples were brought to room 

temperature.  Measurements were taken with ~0.5 mL of sample.  The pH probe 

was rinsed with deionized water, blotted using Kimwipes® and place into the 

sample.  The pH was allowed to stabilize.  The sample was stirred, and the pH 

was allowed to re-stabilize.  The pH was then recorded.  The probe filling solution 

was replaced every 30 days, and calibration was checked daily. 
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Trajectory Analysis 

 

 Incoming air masses to the Tampa Bay area were classified using 

backward trajectories obtained from the National Oceanographic and 

Atmospheric Administration’s Air Resources Laboratory (NOAA ARL) website 

(Draxler and Hess, 1998; HYSPLIT4, 1997).  The Hybrid Single-Particle 

Lagrangian Integrated Trajectory (HYSPLIT) model plots the trajectory of an air 

mass on a three-dimensional grid using archived two-hour meteorological data 

and Lagrangian and Eulerian calculations.  Trajectories were plotted for each 24-

hour sampling period at each sampling site (Table 3). 

          
Site Street Address City Latitude Longitude 
Azalea Park 7200 22nd Ave. N. St. Petersburg 27N 47' 03" 82W 44' 24"
Gandy  5121 Gandy Blvd. Tampa 27N 53' 33" 82W 32' 15"
Sydney Dover & Sydney Rds. Dover 27N 57' 56" 82W 13' 56"
     

Table 3.  Addresses and coordinates for each sampling site. 

Figure 2.  24-hour backward trajectories for (a) terrestrial or land origin (October 

17, 2001) and (b) marine origin (October 25, 2001) (HYSPLIT4, 1997).   
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 Terrestrial or land air masses consisted of masses that originated from the 

north, swept across the state of Florida, or swirled around Tampa (as moderately 

stagnant air).  Marine air masses were those that spent the majority of their path 

over the Gulf of Mexico or the Atlantic Ocean.   

 

Error Analysis 

 

MOUDI 

 

 Error was estimated for the MOUDI samplers using collocated instrument 

data from the May 2002 Sydney site intensive monitoring period.  Two 

instruments were deployed side-by-side.  The flow rates of each instrument were 

adjusted so they were identical at 30 L min-1.  Instrument A was comprised of 

twelve collection bins and instrument B only ten.  The three smallest bins of 

instrument A collected the same diameter particles as the smallest bin of 

instrument B.   Bins nine through twelve of instrument A were summed and then 

compared to bin ten of instrument B.  This resulted in ten comparable bins for 

May 2-20, 2002.  On May 21, 2002, the instruments were exchanged and rotated 

at the collection sites.  Instrument C was collocated with instrument B.  However, 

instrument C did not contain the same cut-points as instrument B.  The only way 

to compare these instruments would have been to sum all of the bins.  Because 
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of this, samples collected after May 20, 2002, were not used in the error 

estimation. 

 Figures 3-11 display the size distributions for the collocated 

measurements.  Size distributions for fluoride, nitrite and phosphate were not 

created because these analytes were near the detection limits. 
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Figure 3.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 4, 2002. 
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Figure 4. Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 6, 2002. 
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Figure 5.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 10, 2002. 
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Figure 6.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 14, 2002. 
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Figure 7.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 15, 2002. 
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Figure 8.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 16, 2002. 
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Figure 9.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 17, 2002. 
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Figure 10.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 19, 2002. 
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Figure 11.  Comparison of collocated measurements of instrument A (●) and 

instrument B (○) for May 20, 2002. 
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Relative bias and relative precision were calculated for the error analysis 

period using Equations 12-14 (Poor et al., 2002).  The relative precision was 

calculated for each analyte in each size bin (Table 4).   

)xy(
)xy(RB
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ii
i +

−
=

2        (Equation 12) 
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Geo Mean Bin Max 

(µm) (µm) 
Na+ NH4

+ K+ Mg2+ Ca2+ F- Cl- NO2
- NO3

- PO4
3- SO4

2- AVG

23 30 19% 77% 50% 19% 27% 73% 19% 92% 28% 19% 20% 40%
13 18 26% 100% 57% 28% 35% 103% 26% 116% 31% 48% 24% 54%
7.5 10 9% 82% 28% 12% 17% 70% 10% 90% 16% 50% 9% 36%
4.2 5.6 19% 68% 14% 18% 15% 65% 23% 98% 15% 56% 50% 40%
2.4 3.2 25% 64% 27% 22% 28% 83% 25% 98% 16% 13% 14% 38%
1.3 1.8 39% 53% 23% 53% 43% 82% 48% 75% 34% 77% 58% 53%

0.75 1.0 28% 20% 40% 50% 85% 47% 112% 97% 90% 1% 17% 53%
0.42 0.56 71% 48% 35% 106% 103% 47% 85% 96% 82% 82% 44% 73%
0.24 0.32 73% 53% 39% 86% 110% 47% 99% 109% 83% 67% 40% 73%
0.042 0.18 98% 45% 80% 124% 87% 47% 96% 100% 109% 67% 42% 81%

Average 41% 61% 39% 52% 55% 66% 54% 97% 50% 48% 32% 54%
              

Table 4.  Relative precision for the MOUDI instrument during May 2002. 

 

 Relative precision improves at higher analyte concentration.  Chloride is 

predominantly a coarse mode species.  When analyzing the relative precision for 

chloride in the coarse particle bins, the relative precision is, on average, 20%.  

When analyzing the chloride in the fine particle bins, however, the relative 

precision is near 100%.  Analyte concentrations of F-, NO2
- and PO4

3- were near 
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the detection limits during the sampling period, resulting in higher relative 

precision values. 

 The relative precision values listed in Table 4 were used to place error 

bars on the MOUDI measurements. 

 

Annular Denuder System 

 

 Error estimation for the annular denuder system (ADS) was done using 

collocated measurement data from August 1996 through November 2002.  The 

Environmental Protection Commission of Hillsborough County collected data on 

a one-in-six day measurement cycle at the Gandy monitoring site.  The relative 

bias and precision were calculated using Equations 12-14.  The values are 

reported in Table 5. 

      
  Number of Relative 
  Samples (n) Precision (%)

HCl 19 37% 
HNO3 304 24% 
NH3 305 15% 
SO2 303 14% 
NO3

- 280 23% 
NH4

+ 278 28% 
SO4

2- 281 26% 
   

Table 5.  Relative precision for the annular denuder system measurements. 
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Statistical Analysis 

 

Grubbs’ Outlier Test 

  

 The Grubbs’ outlier test (GraphPad Software, 2000) is also called the 

extreme studentized deviate (ESD) method.  The test computes a Zobtained value, 

SD
valuemeanZ || −

=        (Equation 15) 

where the mean was the arithmetic mean of the data set, value was the 

numerical value in question and SD was the standard deviation of the data set.  

Both the mean and the standard deviation were calculated using all of the values, 

including the outlier value in question.  The Zobtained value was compared to a 

Zcritical.  The null hypothesis was rejected if |Zobtained| > |Zcritical|, and the value in 

question was identified as an outlier. 

 

Paired t-Test 

 

 The paired t-test was used to compare the means of two groups of data.  

The test assumes the sampled data set was taken from a Gaussian bell-shaped 

distributed population.  A null hypothesis was developed stating the two data sets 

were not statistically different.  The difference between each pair of 

measurements was calculated.  The mean, d , and the standard deviation, SD, 
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of the differences were then calculated and used to obtain a t-value (Glover and 

Mitchell, 2002; Pagano and Gauvreau, 2000), 









=

n
SD
dt         (Equation 16) 

where n was the number of observations.  The null hypothesis was accepted if 

|tobtained| < |tcritical|, indicating the data sets were not statistically different. 

 

Wilcoxon’s Signed Rank Test 

 

The Wilcoxon’s signed rank test is a non-parametric test used to test the 

differences between two paired data sets taken from a non-Gaussian distributed 

population.  Values were ranked according to the absolute value of their size 

from the smallest to the largest (Ott, 1993; Pagano and Gauvreau, 2000).  The 

ranks were summed as:  

2
1)n(nS +

=         (Equation 17) 

where n was the number of observations.  Ranks were then summed according 

to their association with positive or negative values.   

)S,S(minTobtained −+=       (Equation 18) 

 The smaller of the two values (S+ or S-) was used as the test statistic.  

Tcritical can be obtained from a table.  The null hypothesis was accepted if 

|Tobtained| < |Tcritical| indicating the paired data sets were not statistically different.   
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Experimental Studies 

 

Preliminary Dichotomous Studies  

 

 Local air quality and particulate matter size distributions depend on the 

local environment and meteorological conditions.  Particulate ammonium and 

nitrate can be found in the fine fraction as NH4NO3, as seen in California’s urban 

environment (Grosjean, 1982); and nitrate can be almost exclusively in the 

coarse fraction as NaNO3, as seen in Hong Kong’s maritime environment 

(Zhuang et al., 1999a; Zhuang et al., 1999b).  Previous measurements of coarse 

particulate matter in urban coastal Tampa have only included mass 

determination; they have not included inorganic species determination through 

chemical analysis.  The main focus of this experiment was to develop a 

background understanding of the inorganic aerosol distribution for the Tampa 

area. 

 

Experimental 

 

 Samples were collected at the Gandy Bridge sampling site, adjacent to 

Tampa Bay, with the help of the Environmental Protection Commission of 
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Hillsborough County.  The samples were collected during a seven-day period 

from October 5-12, 2000, using a dichotomous sampler.   The sampler was 

equipped with Nylasorb membrane filters, integrating over 24 hours.  After 

sampling, the filters were brought back to the laboratory where they were 

extracted and analyzed. 

 

Results and Discussion 

 

 Samples were analyzed to determine which particulate species dominated 

the coarse and fine size fractions.  Results indicated the following: sodium, 

calcium, chloride and nitrate were the species dominating the coarse size fraction 

(Figure 12).  The remainder, ammonium, potassium, fluoride, sulfate and 

hydronium, were primarily found in the fine fraction.  The coarse percent of a 

species was calculated by: 

( ) %
]Na[]Na[

]Na[]Na[%Coarse
finecoarse

coarse 100×
+

= ++

+
+   (Equation 19) 

 The high concentrations of sodium and chloride in the coarse fraction can 

be attributed to the presence of sea salt at the bayside Gandy site.  Calcium was 

also found predominantly in the coarse mode.  The Ca2+:Na+ molar ratios for this 

sampling period averaged to be 0.41, where the ratio to that in seawater is 0.044 

(Zhuang et al., 1999a).  The excess calcium in the coarse fraction, which was not 

accounted for by sea salt, can be attributed to mineral dust (CaCO3) particles 

(Zhuang et al., 1999a).    
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Figure 12.  Coarse percentage for dichotomous samples collected during 

October 5-12, 2000.   

 

 About two-thirds, or 67%, of nitrate was found in the coarse fraction.  

Coarse mode nitrate is assumed to be predominantly NaNO3, a product from the 

reaction with sea salt.  The presence of nitrate in the fine fraction was not thought 

to be NH4NO3, as this species is very volatile and unlikely to form in warm, humid 

environments (Allen et al., 1989; Grosjean, 1982).  Instead, the presence of fine 

mode nitrate can be attributed to two reasons:  (1) the filter media used for 

collection was Nylasorb membrane filters.  These nylon filters have a tendency to 

adsorb nitric acid from the air stream, potentially biasing the nitrate 

concentration.  In the dichotomous sampler, the air stream was split by a virtual 
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impactor, 1.67 L min-1 of the incoming air was directed onto the coarse filter, with 

the remaining 15 L min-1 directed onto the fine filter (Poor et al., 2002).  This 

increase in airflow on the fine filter greatly increased the potential for bias during 

the sampling period.  (2) The distribution of coarse mode nitrate may extend into 

the fine (<2.5 µm) fraction.  This theory will be examined using size distribution 

studies. 

 

Size Distribution Determination 

 

 Cascade impactors are instruments used to obtain a clearer 

understanding of particle size distributions.  These instruments separate particles 

by their aerodynamic diameter into multiple size bins instead of simply coarse 

and fine particle bins.  The purpose of this experiment was to determine the size 

distribution of nitrate and ammonium particles. 

 

Experimental 

 

 An Andersen cascade impactor was deployed during a three-day period, 

January 11-13, 2001.  The instrument was equipped with custom-cut quartz fiber 

filters, integrating over 72 hours.  For instrument comparison, a dichotomous 

sampler was collocated with the Andersen impactor.  The dichotomous sampler 

was equipped with Nylasorb membrane filters, integrating over 24 hours. 
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Results  

 

 Table 6 shows the range and three-day averaged concentrations for the 

dichotomous fine and coarse size fractions.  Table 7 shows the total 

concentrations for the Andersen cascade impactor samples for the three-day 

integrated period based on size fraction. 

           
Dichotomous Particle Concentrations (µg m-3) 

  Fine (Dp<2.5 µm) Coarse (2.5<Dp<10 µm) 
  Min-Max 3-Day Avg  Min-Max 3-Day Avg 
H+ 0.03-0.16 0.10 0.00-0.15 0.05 
Cl- 0.00-0.07 0.03 0.01-0.46 0.18 

NO3
- 0.67-1.8 1.2 0.00-1.8 0.91 

SO4
2- 4.6-5.4 5.1 0.00-0.00 0.00 

Na+ 0.00-0.91 0.40 0.16-2.0 1.12 

NH4
+ 1.0-1.3 1.1 0.00-0.05 0.02 

K+ 0.03-0.06 0.04 0.00-0.00 0.00 
Mg2+ 0.00-0.05 0.02 0.04-0.19 0.12 
Ca2+ 0.00-0.31 0.10  0.16-0.38 0.26 
        

Table 6.  Total and averaged daily concentrations of dichotomous samples 

collected January 11-13, 2001.  
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Cascade Impactor Particle Concentrations (µg m-3) 

  Size ranges, µm 
  0.0-0.4 0.4-0.7 0.7-1.1 1.1-2.1 2.1-3.3 3.3-4.7 4.7-5.8 5.8-9.0 9.0-10
H+ 0.00 0.002 0.002 0.001 0.00 0.001 0.005 0.00 0.002
Cl- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.068 0.00 

NO3
- 0.02 0.51 0.15 0.23 0.39 0.68 0.40 0.64 0.43 

SO4
2- 0.69 2.9 3.4 1.1 0.36 0.34 0.22 0.24 0.30 

Na+ 0.068 0.092 0.15 0.23 0.27 0.55 0.33 0.53 0.33 

NH4
+ 0.11 0.47 0.59 0.16 0.00 0.00 0.00 0.00 0.00 

K+ 0.011 0.020 0.026 0.059 0.00 0.020 0.009 0.090 0.015
Mg2+ 0.028 0.029 0.002 0.028 0.029 0.050 0.035 0.050 0.035
Ca2+ 0.029 0.00 0.072 0.24 0.063 0.15 0.18 0.12 0.12 
          

Table 7.  Concentrations for the Andersen cascade impactor for January 11-13, 

2001.   

 

 Size distributions were calculated from the Andersen cascade impactor 

data.  The data was fit to a normalized distribution by dividing the experimental 

analyte concentration, Cexperimental, by the difference in the Log10 diameter for the 

bin maximum and minimum.   

( ) ( )minmax 1010

alexperiment

ppp DLogDLog
C

dLogD
dC

−
=    (Equation 20) 

 Sodium and nitrate had bimodal distributions (Figure 13), both peaking 

between 3-4 and 9-10 µm.  Ammonium and sulfate were both of a single mode 

(Figure 14), peaking around 0.65 µm. 
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Figure 13.  Normalized particle size distributions of sodium, nitrate and chloride 

using Andersen instrument from January 11-13, 2001. 
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Figure 14.  Normalized particle size distributions of ammonium and sulfate using 

the Andersen instrument from January 11-13, 2001. 
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Discussion 

 

 Coarse mode nitrate can be attributed to the adsorption and reaction of 

gaseous HNO3 with calcium and magnesium in mineral dust and sodium in sea 

salt particles (Jordan et al., 2000).  Reactions with the calcium or magnesium do 

not appear to be the major pathway under the sodium-rich marine conditions.  

The fine mode nitrate may be due to the gas-to-particle conversion and 

neutralization of HNO3 and NH3, forming NH4NO3.  During the sampling times, 

the environmental conditions did not favor the formation of volatile NH4NO3.  As a 

result, very little nitrate was assumed to be associated with ammonium.   

 The formation of fine mode sulfate results from the condensation and 

neutralization of sulfuric acid with ammonia.  During the sampling period, the 

majority of the sulfate and ammonium was collected in the fine size fractions.  

Figure 14 shows a strong 1:1 molar ratio of ammonium to sulfate.  It appears that 

these constituents are present in the form of NH4HSO4, leaving the fine aerosol 

slightly acidic.   

 The dichotomous and size-fractioned samples revealed the presence of 

chloride in the coarse fraction.  The major source of chloride is sea salt, as NaCl.  

Seawater has a molar ratio of Cl-:Na+ of 1.16 (Aherne and Farrell, 2002), but the 

molar ratios of Cl-:Na+ for the coarse and fine fractions were 0.10 and 0.05, 

respectively.  This indicated a deficiency of chloride relative to the sodium 

concentration.  The loss of chloride was attributed to the reactions of NaCl with 

HNO3 and H2SO4, producing gaseous HCl. 
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 Chloride depletion was calculated using Equation 3.  The percentage of 

chloride depletion for this sampling period ranged from 86 to 100%, results are 

reported in Table 8.   

    
 % Cl-depletion 
Andersen Fine (Dp > 2.1 µm) 100% 
Dichot Fine  (Dp > 2.5 µm) 94% 
Andersen Coarse (2.1 < Dp < 10.0 µm) 99% 
Dichot Coarse (2.5 < Dp < 10.0 µm) 86% 
  

Table 8.  Average chloride depletion, in percentage, for January 11-13, 2001. 

 

 One factor for determining the extent of chloride depletion is the relative 

humidity.  The water content of the hygroscopic salts increases with relative 

humidity.  The additional surface waters play a role in the uptake of nitric acid 

and the gas-particle nitrate equilibrium (Guimbaud et al., 2002b).  During this 

sampling period, the relative humidity was greater than 90%, and the air mass 

was of marine origin.  High chloride depletion was expected. 

 In Table 9, the dry deposition flux (Equation 1) was calculated for three 

particle diameters.  The nine different size bins of the cascade impactor were 

assigned to one of the three particle diameter categories.  Concentrations were 

the nitrate particle concentration sums for all stages in that size range.  As the 

square of the particle diameter increases, its gravitational settling velocity 

increases.  Results in Table 9 indicate that 5.8 to 10.0 µm particles accounted for 

60% of the total nitrogen flux for particles less than 10.0 µm.   
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Particle  Particle Particle Settling Flux  Percent 

Diameter  Dp Range Conc. Velocity (kg-N   of   
(µm)  (µm) (µg-N  m-3) (cm s-1) ha-1 yr-1)  Flux 
1.0  0.0-3.3 1.3 0.017 0.071  23% 
4.7  3.3-5.8 0.24 0.069 0.053  17% 
9.0   5.8-10.0  0.24  0.25  0.19   60% 

    Sum of Flux  0.31   100% 
        

Table 9.  Dry deposition flux for particulate nitrogen (nitrate + ammonium) for 

January 11-13, 2001. 

 

 Previous research has modeled the dry deposition settling velocities for 

different nitrogen containing species (Poor et al., 2001).  Over a three-year 

averaged study, gaseous ammonia and nitric acid accounted for 53% and 40% of 

the 7.3 kg-N ha-1 yr-1 of total nitrogen deposition, respectively.  Particulate nitrate 

only accounted for 3.5%, but this estimate only accounted for fine mode 

particulate nitrogen compounds.  As seen from Table 9, coarse mode nitrate 

would account for 60% of particle nitrogen deposition for particles less than 10 

µm.  New estimates need to be developed to account for coarse particle nitrate.  

 

Evidence of Macroparticles 

 

 In recent years, research has confirmed the presence of coarse particle 

nitrogen.  Coarse particles of NaNO3 can form, for example, when a marine air 

mass laden with sodium chloride mixes with an anthropogenic air mass rich in 

nitric acid.  These particles are typically less than 10 µm in diameter.  The 
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purpose of this investigation was to determine if rapidly depositing atmospheric 

particles or particle aggregates with diameters 10 to 80 µm contain nitrogen. 

 

Experimental 

 

 Macroparticles are those with a diameter greater than 10 µm.  They were 

investigated during an intensive six-week period during October and November 

2001.  Particles up to 10 µm were collected using the dichotomous sampler, 

collecting coarse and fine species.  Total suspended particulates (TSP) were 

collected using the TSP sampler, or simply an inverted filter pack.  In both 

instruments, Whatman PTFE Teflon membrane filters were used as the collecting 

media and were integrated over 24 hours.  An annular denuder system was 

collocated with the samplers to collect ambient gaseous nitric acid and fine 

particulate matter. 

 

Results and Discussion 

 

 Macroparticle concentrations were first determined by simply subtracting 

the dichotomous (coarse + fine) concentration from the TSP concentration 

(Equation 21). 

macrosdichotomouTSP NONONO ][][][ 333
−−− =−     (Equation 21) 

 Figure 15 represents the daily macroparticle concentrations of Na+, Cl- 

and NO3
-.  All values greater than zero indicate the presence of that species in 
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the greater than 10 µm size fraction.  Na+ and Cl- concentrations were 

significantly correlated (r=0.75) but not Na+ and NO3
- (r=0.26).  NO3

- 

concentrations were plotted to visualize the correlations with Ca2+ (r=0.69).  

These correlations pointed to macroparticle NO3
- as possibly Ca(NO3)2 rather 

than NaNO3. 
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Figure 15.  Daily macroparticle concentrations of (a) Na+ and Cl- and (b) Ca2+ and 

NO3
- (October-November 2001). 
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 Due to the nature of coarse particulate matter sampling, ambient gas 

species may play a role in the final result of the species collected.  In this study, 

gaseous HNO3 was not denuded from the airflow of neither the TSP nor the 

dichotomous samplers, and the potential existed for HNO3 to react with coarse 

particles that had accumulated on the filter (Perrino et al., 1988).  In the 

dichotomous sampler, however, the airflow through the coarse filter was low at 

1.67 L min-1 (as compared to the 28.3 L min-1 of the TSP sampler) thus reducing 

the nitric acid bias associated with coarse particle interactions. 

n = 29
slope = 1.462 + 0.059
standard error of regression = 0.011
R2 = 0.846
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Figure 16.  Simple linear regression for TSP NO3
- versus dichotomous total NO3

- 

using daily concentrations (October-November 2001). 
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 To estimate the HNO3 bias between the TSP and dichotomous samplers, 

TSP NO3
- was plotted against the dichotomous NO3

- (Figure 16).  From the linear 

regression, it was found that the dichotomous total NO3
- concentrations 

explained ~85% of the variability in the TSP NO3
- concentrations.  The daily TSP 

NO3
- concentrations were ~46% higher than the dichotomous total NO3

- 

concentrations.  The slope of the regression curve was defined as the possible 

nitric acid bias between the two methods.  For each sampling day, the 

macroparticle concentrations were corrected for this bias (Equation 22). 

*
333 ][][46.1][ macrosdichotomouTSP NONONO −−− =−    (Equation 22) 
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Figure 17.  Daily macroparticle nitrate concentrations with correction for the nitric 

acid bias. 
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 The mean and standard error of the nitrate macroparticle concentrations 

were plotted in Figure 17 after correction for the nitric acid bias.  The mean and 

standard error excluded the two statistical outliers.  All but two concentrations 

were within two times the standard error of the regression about zero.  These two 

concentrations offer tentative evidence of ambient nitrate macroparticles. 

 The formation of NaNO3 and Ca(NO3)2 on the filter was likely dependent 

on the air velocity through the filter, the particle number and size, the relative 

humidity and the ambient nitric acid concentration; and it may not be well 

modeled with a linear regression.  It was postulated that relative humidity played 

a role, providing an aqueous layer for the chemical conversion (Ten Brink, 1998).   

 Trends were addressed to find an affiliation for the macroparticle nitrate.  

Ammonium-to-sulfate ratios have been used as an indicator of an air mass age.  

NH4
+:SO4

2- molar ratios near 2.0 indicate an aged air mass, whereas those less 

than or equal to 1.0 represent a relatively fresh air mass, as NH3 has not been 

completely neutralized with sulfate.  The two days of possible macroparticle 

formation were consistent with NH4
+:SO4

2- molar ratios of near 2.0, suggesting an 

aged air mass.  The air mass origin on these days was predominantly from 

terrestrial sources, with higher than average Ca2+ concentrations and HNO3 

concentrations.  This suggested that the macroparticle NO3
- was affiliated with 

mineral dust particles, possibly as Ca(NO3)2.  

 The nitrate affiliated with the mineral dust Ca2+ particles may also be a 

product of depositing HNO3 reacting on previously settled soil dust.  There was a 

minimum amount of rain during the sampling period, leaving the potential for 
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water-soluble species to exist on the ground.  The bayside sampling site was 

located <100 m from a major roadway.  Re-suspended soil or road dust was a 

possible source of macroparticle Ca2+ and NO3
-.  A 20-µm particle re-suspended 

to a height of 100 m could travel more than 30 km before re-depositing to the 

surface.  Other possible sources for macroparticle nitrate include dust from local 

agricultural areas.  These particles may be more enriched with nitrate than those 

from other sources. 

 

Retention of Nitric Acid by Nylon Filters 

 

 Several techniques have been used to measure gaseous HNO3 and 

particulate NO3
- concentrations in the atmosphere.  Some of these techniques 

include filter pack (FP) methods (Anlauf et al., 1986; Perrino et al., 1988; Spicer, 

1986; Torseth et al., 2000) and annular denuder systems (ADS) (Torseth et al., 

2000; Tsai et al., 2000; Vossler et al., 1988).  Filter packs have been the method 

of choice for a number of government agencies, such as U.S. Environmental 

Protection Agency National Dry Deposition Network (NDDN) and U.S. Clean Air 

Status and Trends Network (CASTNet) (Kim and Allen, 1997; Sickles II and 

Hodson, 1999) because they have low maintenance problems, light weight, low 

cost and the same collection efficiency as other methods (Karakas and Tuncel, 

1997).  The ADS was designed to collect HNO3 and particulate NO3
-, 

differentiating between the vapor phase HNO3 and HNO3 produced from the 

dissociation of NH4NO3 during sampling (Vossler et al., 1988). 
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 Several studies have indicated the potential for nylon filters to adsorb 

gaseous nitric acid (Karakas and Tuncel, 1997; Perrino et al., 1988), but most of 

these studies were performed in environments where conditions were suitable for 

the formation of NH4NO3.  This experimental study was done in a coastal 

environment where the average relative humidity and temperature were above 

the deliquescent relative humidity (Seinfeld and Pandis, 1998) and dissociation 

temperatures (Stelson et al., 1979) for NH4NO3, thus avoiding the issues of 

formation and dissociation.   

 PM2.5 cyclone inlets were chosen to avoid the collection of sea salt 

particles, which have bimodal diameters greater than 3 µm (Evans and Poor, 

2001).  HNO3 can be liberated from sea salt particles by the reaction of nitrate 

salts (NaNO3) with H2SO4 and HCl (Appel et al., 1984). 

 

Experimental 

 

 Ambient gas and particulate concentrations were collected using two 

separate channels on an annular denuder system (ADS) from URG Corporation.  

Channel one consisted of a Teflon-coated PM2.5 cyclone inlet, two 242-mm 

denuders and a filter pack, in series.  The denuders were prepared as stated in 

the methods section using citric acid as the acidic denuder coating solution.  The 

filter pack was equipped with a Whatman nylon or Nylasorb nylon filter.  The 

second channel consisted of a Teflon-coated PM2.5 cyclone inlet and a filter pack, 
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in series.  The filter pack was equipped with a Whatman nylon or Nylasorb nylon 

filter.  Denuders and filters were extracted and analyzed. 

 The samples were collected during a six-week period in the fall of 2001.  

The sampling site was located on the property of the State of Florida Fish and 

Wildlife Conservation Commission, which is on the eastern side of the Gandy 

Bridge on Tampa Bay.  The samples were integrated over 24 hours with an 

ambient airflow of 10 L min-1, which was checked daily using a dry gas meter.  

During the first three weeks, 47-mm, 1-µm pore size Whatman nylon filters were 

used.  Pall Gelman Nylasorb 47-mm, 1-µm pore size were used during the 

second three-week period.   

 When using a cyclone inlet in marine environments, the interior wall of the 

ADS cyclone may be become coated by sea salt particles.  It has been found that 

sea salt aerosols react with acids, such as H2SO4 and HNO3, in the atmosphere 

forming sulfates and nitrates (Li-Jones et al., 2001).  The reaction between HNO3 

and sea salts within the cyclone may result in a substantial amount of HNO3 loss.  

This reaction leads to the misapportionment of both NO3
- and Cl-, as HCl is 

released into the vapor phase.  To prevent nitric acid loss within the cyclone, the 

cyclones were thoroughly cleaned with deionized water and dried between 

deployments. 
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Results and Discussion 

 

 Two channels on the ADS were used to collect (a) HNO3 and “denuded” 

particulate matter (PM) nitrate.  The term denuded is used to describe the PM2.5 

fraction of nitrate of which the HNO3 and other reactive gases have been 

removed, or denuded, prior to collection of the particulate matter; and (b) 

“undenuded” PM NO3
-.  Undenuded refers to the second channel of collection in 

which both HNO3 and PM2.5 NO3
- are collected on the filter.  In theory if nylon 

substrates prove to be 100% efficient in HNO3 collection, the sum of analytes 

collected on both the denuder and denuded filter will equal the sum of analytes 

on the undenuded filter. 

 The reason for using two different types of nylon filters was the availability 

of the media types at the time of sampling.  Pall Gelman Sciences had halted 

production of the Nylasorb nylon filter, and they were unavailable for purchase.  

As an alternative, nylon filters were purchased from Whatman.  One major 

drawback for the use of the Whatman filters was the presence of existing 

analytes, especially nitrates.  Both types of filters were treated identically from 

deployment to analysis.  Data correction by blank subtraction is common for this 

type of analysis, but was a major factor in the Whatman filters.  Pall Gelman 

Sciences certifies their filters with respect to nitrate concentrations. 

 The temperature and relative humidity (RH) values for the sampling period 

are listed in Table 29 (Appendix 1).  Experimental HNO3, denuded PM nitrate 

and undenuded (UD) nitrate concentrations are given in Table 10. 
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Whatman (µmol m-3) Nylasorb (µmol m-3) 

  
HNO3 
gas 

den PM 
NO3

- 
UD HNO3 

+ NO3
-   

HNO3 
gas 

den PM 
NO3

- 
UD HNO3 

+ NO3
- 

10/10/01 0.009 0.009 0.017 11/1/01 0.007 0.017 0.020 
10/11/01 0.007 0.007 0.010 11/2/01 0.006 0.014 0.016 
10/12/01 0.007 0.011 0.015 11/3/01 0.006 0.012 0.013 
10/13/01 0.008 0.010 0.014 11/4/01 0.019 0.007 0.008 
10/14/01 0.007 0.008 0.014 11/5/01 0.008 0.015 0.023 
10/15/01 0.023 0.013 0.022 11/6/01 0.010 0.002 0.028 
10/16/01 0.012 0.011 0.020 11/7/01 0.033 0.017 0.031 
10/17/01 0.013 0.007 0.014 11/8/01 0.023 0.029 0.052 
10/18/01 0.012 0.010 0.018 11/9/01 0.059 0.037 0.047 
10/19/01 0.010 0.015 0.019 11/11/01 0.090 0.033 0.085 
10/20/01 0.007 0.011 0.015 11/12/01 0.032 0.011 0.043 
10/21/01 0.014 0.008 0.010 11/13/01 0.015 0.009 0.012 
10/24/01 0.012 0.008 0.008 11/14/01 0.026 0.007 0.009 
10/26/01 0.043 0.004 0.023 11/15/01 0.009 0.010 0.018 
10/27/01 0.011 0.003 0.008 11/16/01 0.038 0.011 0.026 
10/28/01 0.009 0.010 0.015 11/17/01 0.038 0.016 0.019 
10/30/01 0.026 0.010 0.015 11/18/01 0.011 0.019 0.022 
10/31/01 0.006 0.012 0.016 11/19/01 0.024 0.041 0.049 

        
Table 10.  Experimental nitric acid, denuded nitrate and undenuded nitrate 

concentrations for October - November 2001. 

 

 The Grubbs’ outlier test (GraphPad Software, 2000) was performed for the 

Whatman nylon filter data set, and no outliers were detected.  All data points 

were included in the linear regression analysis (Figure 18) (GraphPad Software, 

2000).   

 From the linear regression (Figure 18), the sum of HNO3 plus the denuded 

PM NO3
- can be estimated to be 37% greater than that collected on the 

undenuded NO3
- fraction.  These filters do not appear to be completely efficient 

in adsorbing gaseous nitric acid. 
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n = 18
slope = 1.374 + 0.380
intercept = 0.002 + 0.006
standard error of regression = 0.007
R2 = 0.450

Undenuded NO3
- (µmol m-3)

0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024

H
N

O
3 

(g
) +

 D
en

ud
ed

 P
M

 N
O

3-  (u
m

ol
 m

-3
) 

0.01

0.02

0.03

0.04

0.05

 

Figure 18.  HNO3 + Denuded PM NO3
- vs. Undenuded NO3

- for Whatman nylon 

filters. 

 

 The paired t-test (GraphPad Software, 2000) was performed to determine 

the statistical significance of the data set.  The test was based on a two-tailed 

test at the 95% confidence interval.    The two data sets were not statistically 

different if |tobtained|<|tcritical|.  For the Whatman nylon filters data set, the tobtained = 

4.6 (tcrit 95% = 2.1).  The test resulted in a rejection of the null hypothesis, 

indicating the data sets for the (HNO3 + denuded NO3
-) compared to the 

undenuded NO3
- (gas plus particulate) were statistically different. 

 A linear regression was created for the Nylasorb nylon filters.  The 

Grubbs’ outlier test was performed, not detecting any outliers (GraphPad 
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Software, 2000).  All data points were included in the linear regression analysis 

(Figure 19). 

n = 18
slope = 1.244 + 0.193
intercept = 0.006 + 0.007
standard error of regression = 0.016
R2 = 0.721
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Figure 19.  HNO3 (g) + Denuded PM NO3
- vs. Undenuded NO3

- for Nylasorb nylon 

filters. 

 The paired t-test (GraphPad Software, 2000) was performed to determine 

the statistical significance of the data set.  The test was based on the 95% 

confidence interval.  For the Nylasorb nylon filter data set, tobtained = 3.5 (tcrit 95% = 

2.1).  The data sets (HNO3 + denuded PM NO3
-) compared to the undenuded 

NO3
- (gas + particulate) were statistically different. 

 To determine the collection efficiency of both the Whatman and Nylasorb 

nylon filters, the particulate matter fraction was subtracted from the undenuded 

nitrate (Equation 23), leaving only the adsorbed nitric acid fraction to compare. 

PMundenudedadsorbed NONOHNO ][][][ 333
−− −=     (Equation 23) 
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 The adsorbed nitric acid, adsorbedHNO ][ 3 , from both filter types was 

compared to the nitric acid collected on the denuders through a linear regression 

(Figures 20-21). 

n = 18
slope = 0.423 + 0.040
standard error of regression = 0.003
R2 = 0.537
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Figure 20.  Nitric acid from the ADS compared to that adsorbed by the Whatman 

nylon filters. 
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n = 18
slope = 0.454 + 0.073
standard error of regression = 0.010
R2 = 0.449
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Figure 21.  Nitric acid from the ADS compared to that adsorbed by the Nylasorb 

nylon filters. 

 

 The Whatman and Nylasorb filters appear to have collected only 42% and 

45% of the total nitric acid, respectively.  To verify this was correct, the t-test was 

performed comparing the HNO3 adsorbed by each filter type to the linear 

regression slope times the HNO3 collected by the ADS.   

 For the Whatman filter type, where the regression slope was 0.42, tobtained 

= 0.55 (tcrit 95% = 2.1).  The t-test resulted in a non-statistical difference between 

the two sets, further indicating the collection efficiency of the Whatman nylon 

filters to be approximately 42%. 

 For the Nylasorb nylon filters, where the regression slope was 0.45, tobtained 

= 0.20 (tcrit 95% = 2.1).  The t-test resulted in a non-statistical difference between 
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the two data sets.  This indicated the collection efficiency of the Nylasorb nylon 

filters to be approximately 45%. 

 A similar study has been done looking at the uptake of nitrous acid (HNO2) 

and NOX by nylon surfaces (Perrino et al., 1988).  The collection efficiencies of 

HNO2 on nylon filters was determined experimentally at different flow rates.  

Efficiencies ranged from 25% at 12 L min-1 to 80% at 2 L min-1.  At 10 L min-1, the 

collection efficiency ranged from 30-40%. 

 The results from Perrino et al. (1988) are comparable to those reported 

here with nitric acid, HNO3.  Both the Whatman and Nylasorb nylon filter media 

resulted in a collection efficiency of approximately 40%.   

 

Size Distributed Trajectory Study 

 

 As freshly emitted sea salt particles mix with the urban plume, sodium 

nitrate particles begin to form.  With transport, this gas-to-particle conversion of 

nitric acid on the sea salt particles is expected to reach equilibrium and contribute 

to particulate nitrate deposition within the Tampa Bay area watershed.  A 

trajectory study was completed looking at the transformation and deposition of 

particles as an air mass moves throughout the Tampa Bay area.   
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Experimental 

 

 Three monitoring sites were established during May 2002, taking 

advantage of monitoring already in progress.  At each site, a MOUDI sampler, an 

ADS and various meteorological instrumentation were deployed.  Collected data 

included 23-hour integrated, size-segregated inorganic particulate species 

concentrations, 12-hour integrated acidic and alkaline gas concentrations, wind 

speed, wind direction, ambient temperature, relative humidity, and water 

temperature. 

 The Azalea Park site is located in the southwester corner of Pinellas 

County, with close proximity to the Gulf of Mexico (Figure 22).  The Gandy Bridge 

site is located on the eastern side of the Gandy Bridge, adjacent to Tampa Bay.  

The third site, Sydney, is located in a semi-rural area, approximately 20 km from 

Tampa Bay.  The three sites span over a 55 km distance, providing sufficient 

travel distance for particle conversion and some deposition. 

 There are many sources of error and uncertainties in this type of 

experimental fieldwork.  They need to be addressed in order to determine if there 

was a real difference in particle concentrations and flux between the sampling 

sites.  The greatest uncertainty lies in the pump flow control.  Each pump was set 

at a 30 L min-1 flow rate and was checked weekly using a dry gas meter.  The 

pumps were not installed in a climate-controlled shelter but were deployed in the 

field open to the elements.  With continual changes to ambient temperature and 

pressure, the flow rate was assumed to change.  During May 2002, the daily 
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temperature ranged from 18 to 33ºC, with an 8 to 10ºC difference between the 

daily minimum and maximum temperatures.  Applying a 10ºC temperature 

change to the ideal gas law resulted in a 3% change to the 30 L min-1 volumetric 

flow rate, which was within the range of the quality assurance protocol flow 

restriction guidelines of 5%.   

 The overall error of the MOUDI samplers was estimated during this time 

period and was averaged at 54%, ranging from 1 to over 100% (Table 4).  The 

average size- and species-dependent error was applied to each data set and 

was seen in the following particle size distributions.  In order to determine a real 

or significant change in the particle concentrations, the entire data range with its 

error needs to be compared.  As a result, minor changes in concentration cannot 

be considered significant as the data points may, in actuality, be of identical 

value.  In this study, trends were used to determine significant changes in the 

particle concentration and flux.  Ten percent was assigned as the minimum 

difference values needed before they were considered significantly different from 

one another. 
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AZALEA PARK 

Tampa 

Point sources of NH3 
Point sources of NOx 

SYDNEY 

GANDY 32 km 

23 km 

 

Figure 22.  Map of sampling sites during the May 2002 intensive period. 

 

Results and Discussion 

 

 Four specific days during the May 2002 intensive were investigated as 

they represented the predominant air mass pattern during the sampling period.  

May 4, 2002, represents a southwestern air origin day (Figure 23a), originating 

from the Gulf of Mexico and the southwestern Florida region.  The air came into 

the area from the west, crossing the sites eastward in order from Azalea to 

Sydney.  May 14, 2002, represents a northwestern air day (Figure 23b), 

originating from the northern states, coming across the Gulf of Mexico for only a 

short period of time.  The air on May 6, 2002, originated from the Atlantic Ocean 

(Figure 23c).  The air mass traveled across the state before reaching the Tampa 

Bay area.  The air traveled in towards the west, reaching the Sydney site first and 
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then traveling onwards past Gandy towards Azalea.  On May 20, 2002, the air 

originated in the Atlantic Ocean area near North and South Carolina (Figure 

23d).  The air traveled over the ocean for some time and then proceeded to cross 

the state, reaching the Sydney site first, followed by Gandy and Azalea. 

 

(a) 
 

May  
4th 

 
South 

Western 
Winds  

(b) 
 

May  
14th 

 
North 

Western
Winds  

(c) 
 

May  
6th 

 
Eastern 
Winds 

 

(d) 
 

May  
20th 

 
North 

Eastern 
Winds  

Figure 23.  Backward air mass trajectories for (a) May 4th, (b) May 14th, (c) May 

6th and (d) May 20th, 2002.   

 

 Many interesting things can be looked at for each episode.  Ammonium to 

sulfate molar ratios can be used to determine the approximate age of an air 

mass.  Ratios near 1.0 indicate a fresh marine air mass, however those near 2.0 

indicate an aged or pollution-laden air mass.  Chloride to sodium and nitrate to 

sodium molar ratios and chloride depletion can be used to determine the extent 

of the reaction between sea salt and nitric acid.  The trends of the magnitudes of 

concentrations can be used to indicate particulate deposition and re-suspension. 
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Figure 24.  Size distributions for each sampling site on May 4, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.77 0.75 0.55 
NO3

-:Na+ 0.48 0.50 0.75 
Cl--dep % 35% 36% 54% 
NH4

+:SO4
2- 1.6 1.8 1.7 

    
Table 11.  Ion ratios for May 4, 2002. 
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 On May 4, 2002, the air mass originated from the Gulf of Mexico and 

southwestern Florida region (Figure 23a).  Upon arrival, the NH4
+:SO4

2- ratio was 

1.57, indicating a moderately fresh or slightly aged air parcel (Figure 24d-f and 

Table 11).  As the air mass traveled eastward, towards Gandy, the ratio 

increased.  However, as the air parcel traveled towards Sydney, the ratio 

decreased slightly.  This may be attributed to the increased SO2 and SO4
2- 

concentrations over urban Tampa.  As the air parcel moved through the 

downtown area, it is possible that additional sulfate was picked up. 

 Upon the arrival at the Azalea site, the chloride to sodium ratio was 0.77 

(Figure 24a-c and Table 11).  As the air mass traveled throughout the area, this 

ratio steadily decreased, reaching 0.55 at the Sydney site.  Nitrate to sodium 

ratios increased from 0.48 to 0.75 as the air picked up urban NOX or nitric acid, 

converting it to particulate nitrate.  In agreement with the above trends, chloride 

depletion increases from 35% to 54% from Azalea to Sydney.  Combined, these 

three indicators represent the adsorption and conversion of gaseous nitric acid to 

particulate nitrate.  As predicted by Reaction 1, HCl is released during the 

process.  This is seen through a steady increase in the percentage of chloride 

depletion. 

 On May 14, 2002, winds originated from the northern states, approaching 

the Tampa area from the northwestern direction (Figure 23b).  When this air 

mass arrived, the ammonium to sulfate ratio was 1.90 (Figure 25d-f and Table 

12).  This is indicative of an aged air mass.  As the air mass crossed Tampa Bay, 

the ratio remained unchanged (ratio values of 1.9 and 1.8 are not significantly 
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Figure 25.  Size distributions for each sampling site on May 14, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.81 0.66 0.56 
NO3

-:Na+ 0.50 0.50 0.73 
Cl--dep % 31% 44% 52% 
NH4

+:SO4
2- 1.9 1.8 2.3 

    
Table 12.  Ion ratios for May 14, 2002. 
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different) and then continued to increase, reaching over 2.3 at the Sydney site.  

There was a significant increase in the ammonium concentration from the Gandy 

to Sydney sites.  There are anhydrous ammonia loading docks and a large 

wastewater treatment plant located at the Port of Tampa, which lies between the 

Gandy and Sydney sites.  This increase in ammonium may be due to activities at 

these facilities.  The concentration of sulfate was seen to only increase slightly. 

 When the air first reaches the Azalea site on May 14, 2002, the nitrate to 

sodium ratio is 0.50 (Figure 25a-c Table 12).  As the air travels through urban 

Tampa and picks up nitric acid, the nitrate to sodium ratio continues to increase, 

reaching 0.73 at the Sydney site.  Coupled with the chloride to sodium ratios and 

chloride depletion indicators, an uptake and transformation of nitric acid to 

particulate nitrate was seen.  All three indicators reveal an increase in the uptake 

and conversion to nitrate.  It appears that some sea salt deposition is occurring 

between the Gandy and Sydney sites, as the concentration of sodium decreases 

between these monitoring locations. 

 On May 6, 2002, the air mass originated in the Atlantic Ocean, traveling 

west across the state before reaching the Tampa Bay area.  Upon arrival to the 

Sydney site, the NH4
+:SO4

2- ratio was over 2.0 (Figure 26d-f Table 13).  This is 

indicative of the air aging as it traveled across the state.  The ratio continued to 

remain over 2.0 as the air traveled past the Gandy and Azalea sites. 
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Figure 26.  Size distributions for each sampling site on May 6, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.53 0.56 0.64 
NO3

-:Na+ 0.63 0.53 0.46 
Cl--dep % 55% 52% 46% 
NH4

+:SO4
2- 2.1 2.4 2.1 

    
Table 13.  Ion ratios for May 6, 2002. 
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Figure 27.  Size distributions for each sampling site on May 20, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.72 0.71 0.74 
NO3

-:Na+ 0.53 0.46 0.45 
Cl--dep % 39% 39% 37% 
NH4

+:SO4
2- 2.1 2.0 2.2 

    
Table 14.  Ion ratios for May 20, 2002. 
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 Upon arrival at the Sydney site, the chloride depletion had already 

reached 46%, steadily increasing to 55% along the prevailing wind direction 

(Figure 26a-c and Table 13).  Coupled with increasing chloride depletion, the    

Cl-:Na+ and NO3
-:Na+ ratios are indicative of the nitric acid gas to particulate 

nitrate conversion. 

 On May 20, 2002, the air originated in the Atlantic Ocean area near North 

and South Carolina (Figure 23).  NH4
+:SO4

2- ratios at all three sites are over 2.0 

(Figure 27 and Table 14), indicating the arrival of an aged air mass.  Chloride 

depletion and Cl-:Na+ and NO3
-:Na+ ratios remain nearly constant, with only a 

very small insignificant fraction of change between the monitoring sites. 

 The ammonium and nitrate particulate nitrogen flux was compared for 

these four sampling days (Figure 28).  For each day, regardless of the air mass 

origin, the particulate nitrate dominated the particulate nitrogen flux.  These 

particles were significantly larger than those of ammonium, giving them a 

significantly larger deposition velocity.  For May 4th and 14th, when the air 

originated out of the west, there does not appear to be any significant trend in 

deposition.  For May 6th and 20th, when the air originated out of the east, there 

does appear to be a slight trend only for nitrate.  Particulate nitrate flux increased 

along the prevailing wind direction.  In general, the air masses originating from 

the east were aged more than those from the west.  Aging allows for the gas-to-

particulate conversion of nitric acid to nitrate.  In an older air mass, higher nitrate 

deposition fluxes would be expected.  For the majority of the sampling days 

during May 2002, the concentration of sodium was greatest at the Azalea site.  
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With its proximity to the Gulf of Mexico, there appeared to be a salt gradient over 

land regardless of the wind direction. 
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Figure 28.  Nitrate and ammonium particulate flux for select days in May 2002. 

 

Size distributions and ion ratios for the remainder of the May 2002 

samples are given in Appendix 2.  Meteorological data for the entire sampling 

period is listed in Tables 26-28 in Appendix 1. 
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EQUISOLV II: A Thermodynamic Model 

 

 EQUISOLV II is an aerosol thermodynamic equilibrium model, which is an 

updated version of EQUISOLV (Jacobson, 1999a; Jacobson, 1999b; Jacobson et 

al., 1996) written by Mark Jacobson from Stanford University.  The original 

EQUISOLV model included sodium, ammonium, chloride, nitrate, and sulfate 

species.  Advances from EQUISOLV, EQUISOLV II includes potassium, calcium, 

magnesium and carbonate species.  The model works by solving sets of 

equilibrium equations, similar to aA + bB  cC + dD, utilizing the temperature-

dependent equilibrium coefficient, keq.   

{ } { }
{ } { }ba

dc

eq BA
DCTk =)(        (Equation 24) 

where {X} is the thermodynamic activity of species X. 

 The model iteratively solves sets of equilibrium equations in a “positive-

definite, mass-conserving, and charge-conserving” process using analytical 

equilibrium iterations and mass flux iterations (Jacobson, 1999a).  After sufficient 

iterations and a positive solution exists to a set of equilibrium equations, 

EQUISOLV II converges.  Species can be gases, dissolved liquids, dissolved 

ions or solids.  Many of the equilibrium reactions and corresponding constants 

are listed in Jacobson (1999a). 
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 The above equilibrium expression (Equation 24) requires the mean mixed 

activity coefficients.  The equilibrium expression for  

NH3(g) + HNO3(g)  NH4
+ + NO3

- is: 

33

3434

2
,

33

34

}{}{
}{}{

HNONH

NONHNONH
eq pp

mm

HNONH
NONHk

−+−+ γ
==

−+

   (Equation 25) 

keq (mol2 kg-2 atm-2) is the equilibrium constant, m (mol kg-1) is the molality, p 

(atm) is the gas phase partial pressure and −+
34 ,NONH

γ  is the mean mixed activity 

coefficient of NH4NO3.  In EQUISOLV II, the mean mixed activity coefficients are 

calculated using the Bromley’s method for the empirical mixing rule (Bromley, 

1973; Jacobson, 1999b) using temperature-dependent coefficients given in 

Jacobson et al. (1996).  The expression for the activity coefficients is as follows: 

...mBmBmBBln //
b ++++= 23

123122
21

1210
0

112γ    (Equation 26) 

where B0, B1, … are the fitting coefficients for each electrolyte and m12 the 

molalities of electrolytes 1 and 2.  These values can be found in Table 2 of 

Jacobson (1999b). 

 The model can be used in two different modes.  It can be used to solve for 

internal equilibrium within a single aerosol bin.  Or, it can be used to determine 

equilibrium for species between the gas phase and multiple, internally mixed, 

aerosol size bins.   

 EQUISOLV II can be set to run under various conditions.  In the default 

mode, aerosols are solids at relative humidity conditions below the particle’s 

deliquescent relative humidity (DRH) and are aqueous aerosols above the DRH 

point.  Metastable conditions are obtained by deactivating the solid formation 
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reactions in the program, limiting aerosols to the aqueous phase.  Metastable 

conditions exist when the ambient relative humidity falls below the particle’s 

DRH; and the aerosol exhibits a hysteresis effect and remains as a 

supersaturated droplet until the relative humidity reaches the particle’s 

crystallization relative humidity (CRH).  This is the relative humidity at which the 

aerosol crystallizes and becomes a solid. 

 

Inputs 

 

 The model is initialized by creating a text file with the following data: 

temperature, relative humidity, pressure, number of collection stages, cut-point 

diameters for each collection stage, aerosol concentrations and gas 

concentrations.  The model was altered from the original version to accept twelve 

input bins.  Aerosol concentrations of Na+, NH4
+, K+, Mg2+, Ca2+, Cl-, NO3

- and 

SO4
2- are entered for each bin in units of ng m-3.  Gas concentrations of HNO3, 

NH3, HCl and SO2 are also entered in units of ng m-3.  Ion imbalances were 

automatically corrected for using hydrogen and carbonate ions.  The following is 

an example of an input file. 
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Figure 29.  EQUISOLV II input file example. 

 

 Upon execution, the model redistributes the volatile species between the 

multiple size bins and the gas phase until equilibrium is reached.  The volatile 

species include nitrate, chloride and ammonium. 

 

Outputs 

 

The output for the model includes the predicted equilibrium gas, aqueous 

and solid particle concentrations.  The list of predictable solids includes: NH4NO3, 

                  AEROSOL-COMPONENT CONCENTRATION VERSUS SIZE 
 
 
DATE: 5/04 GANDY     
 
T   = TEMPERATURE (C), EITHER SAMPLING OR AMBIENT 
RH  = RELATIVE HUMIDITY (%), EITHER SAMPLING OR AMBIENT 
P   = AIR PRESSURE (MB), EITHER SAMPLING OR AMBIENT  
D50 = 50% CUTOFF DIAMETERS 
 
BEGIN 
SAMPLING T = 26.2 C  RH = 76.6 %;   AMBIENT T = 26.2 C; RH = 76.6 % 
         P = 1019.13 MB                     P = 1019.13 MB  
12  STAGES 
D50(UM) 18.00 10.0  5.60  3.20  1.80  1.00  0.56  0.32  0.180 0.10  0.056 0.01 
DLO, DHI (UM)     0.001  30.0 
 
FORMAT(A1,1X,A6,12(0PF6.2))  
 
                          AEROSOL CONCENTRATIONS (NG M-3)  
BEGIN 
A NA+   188.7 127.3 552.7 784.0 309.0 151.0 12.88 4.300 2.960 0.000 1.650 0.400 
A NH4+  0.000 0.000 0.000 0.000 1.240 24.46 258.8 363.3 270.3 110.9 72.70 17.65 
A K+    7.760 5.730 22.00 43.89 22.73 10.55 11.33 14.22 11.91 6.990 4.470 4.520 
A MG2+  29.32 19.07 75.96 107.3 44.84 23.98 3.300 1.570 1.070 0.000 0.030 0.110 
A CA2+  152.8 105.5 206.1 265.7 101.6 44.62 7.280 7.050 3.370 0.760 3.550 5.520 
A CL-   319.6 208.8 806.3 848.5 218.1 52.06 0.000 0.000 0.000 0.000 0.000 0.000 
A NO3-  115.0 89.46 550.0 1228. 604.9 238.1 0.000 0.000 0.000 2.000 2.090 20.09  
A SO42- 87.74 57.89 243.6 403.0 234.2 283.8 800.0 1035. 798.0 322.2 211.6 38.16 
  END 
                            GAS CONCENTRATIONS (NG M-3)  
BEGIN 
A HNO3  395.1        
A NH3   782.0 
A HCL   1152. 
A SO2   7421. 
  END 
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NH4Cl, NH4HSO4, (NH4)2SO4, (NH4)3H(SO4)2, NH4HCO3, NaNO3, NaCl, NaHSO4, 

Na2SO4, NaHCO3, Na2CO3, KNO3, KCl, KHSO4, K2SO4, KHCO3, K2CO3, 

Ca(NO3)2, CaCl2, CaSO4•2H2O, CaCO3, MgCl2, Mg(NO3)2, MgSO4 and MgCO3.   

The predictable gases and liquids include: HCl, H2O, H2SO4, SO2, HNO3, NH3 

and CO2.  The remaining analytes are constrained to the aqueous phase. 

 

Limitations 

 

 The EQUISOLV II model is a mass and charge conserving thermodynamic 

model.  The model cannot be used simply to predict a gas phase concentration 

of a species given a fixed amount in the particle phase.  The model only 

redistributes a given amount of a substance.  Multiple, iterative model runs must 

be completed to derive this relationship. 

 One benefit from using the model is that it is capable of differentiating 

between the solid and aqueous phases, allowing it to predict the solid phase 

formation.  This information cannot be directly determined from aerosol 

measurements, which indicates the presence and size of the species but not its 

phase (Campbell et al., 2002). 
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Qualitative Analysis 

 

 Before the EQUISOLV II thermodynamic model can be used for 

theoretical work, it must be investigated whether it can predict size-resolved 

concentrations of ammonium, chloride and nitrate. 

 Measurements taken during the May 2002 intensive sampling period were 

used for the model evaluation.  Samples were taken using the MOUDI sampler 

with 23-hour integration.  Measurements were collocated with an annular 

denuder system for the collection of acidic and basic gas species.  

Meteorological data was averaged for each 23-hour period for the model input. 

 All ions analyzed except fluoride, nitrite and phosphate were included in 

the model runs.  These excluded ions were only present in minute quantities, 

near the detection limit of the ion chromatograph, and are coincidentally not 

treated by the model. 

 The model was run in two modes, default and metastable, for analysis to 

see which mode gave results closest to the experimental data.  In the metastable 

mode, analytes were constrained to the gaseous and aqueous phases. 
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HNO3 (µg m-3) 

    Measured Modeled 
(Default) 

Modeled 
(Metastable) 

5/4/02 Azalea 0.55 1.09 0.24 
  Gandy 0.40 0.40 0.37 
  Sydney 0.37 1.72 0.35 

5/6/02 Azalea 0.89 0.39 0.13 
  Gandy 1.09 1.51 0.97 
  Sydney 0.63 1.46 0.10 

5/10/02 Azalea 0.37 0.00 0.00 
  Gandy 1.24 3.52 0.98 
  Sydney 0.58 1.24 1.05 

5/14/02 Azalea 0.42 0.18 0.13 
  Gandy 0.88 0.88 0.84 
  Sydney 0.65 0.24 0.21 

5/15/02 Azalea 0.68 2.73 0.00 
  Gandy 0.77 0.48 0.47 
  Sydney 0.84 2.49 0.69 

5/16/02 Azalea 0.69 1.09 0.37 
  Gandy 0.96 1.37 0.69 
  Sydney 0.28 0.70 0.34 

5/17/02 Azalea 0.21 0.15 0.13 
  Gandy 0.39 0.64 0.42 
  Sydney 0.44 0.49 0.44 

5/19/02 Azalea 0.56 0.23 0.20 
  Gandy 0.23 0.20 0.18 
  Sydney 0.12 0.37 0.36 

5/20/02 Azalea 0.60 0.39 0.40 
  Gandy 0.68 1.45 1.21 
  Sydney 0.28 0.73 0.40 

5/23/02 Azalea 0.60 0.57 0.37 
  Gandy 0.58 0.64 0.44 
  Sydney 0.39 0.01 0.01 

5/24/02 Azalea 0.27 0.00 0.00 
  Gandy 0.56 0.94 0.71 
  Sydney 0.37 0.51 0.38 

5/25/02 Azalea 0.36 0.08 0.07 
  Gandy 0.57 0.97 0.76 
  Sydney 0.51 0.31 0.22 
     

Table 15.  Comparison between measured HNO3 gas concentrations and those 

modeled by EQUISOLV II. 
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NH3 (µg m-3) 

    Measured Modeled 
(Default) 

Modeled 
(Metastable) 

5/4/02 Azalea 2.41 1.92 2.34 
  Gandy 0.78 0.75 0.82 
  Sydney 1.63 1.55 1.61 

5/6/02 Azalea 2.45 2.66 2.73 
  Gandy 2.56 3.05 3.05 
  Sydney 1.09 1.30 1.40 

5/10/02 Azalea 3.54 3.78 3.80 
  Gandy 1.23 1.64 1.64 
  Sydney 1.73 1.97 1.94 

5/14/02 Azalea 1.28 1.28 1.32 
  Gandy 0.64 0.56 0.62 
  Sydney 1.19 1.50 1.53 

5/15/02 Azalea 2.35 2.38 2.52 
  Gandy 0.84 0.75 0.84 
  Sydney 1.62 1.57 1.66 

5/16/02 Azalea 1.76 1.36 1.65 
  Gandy 3.42 2.47 3.25 
  Sydney 1.53 1.80 1.83 

5/17/02 Azalea 4.51 4.38 4.43 
  Gandy 1.79 1.73 1.75 
  Sydney 3.38 3.40 3.39 

5/19/02 Azalea 1.10 1.23 1.25 
  Gandy 0.59 0.62 0.62 
  Sydney 1.59 1.75 1.75 

5/20/02 Azalea 2.00 1.90 1.96 
  Gandy 0.62 0.58 0.55 
  Sydney 1.75 1.97 1.90 

5/23/02 Azalea 2.28 2.22 2.19 
  Gandy 1.92 1.82 1.80 
  Sydney 1.64 1.63 1.65 

5/24/02 Azalea 2.43 2.52 2.53 
  Gandy 2.18 2.23 2.19 
  Sydney 0.91 0.79 0.76 

5/25/02 Azalea 2.44 2.55 2.57 
  Gandy 5.63 5.53 5.48 
  Sydney 1.17 1.19 1.18 
     

Table 16.  Comparison between measured NH3 gas concentrations and those 

modeled by EQUISOLV II. 
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HCl (µg m-3) 

    Measured Modeled 
(Default) 

Modeled 
(Metastable) 

5/4/02 Azalea 2.70 0.90 0.14 
  Gandy 1.15 0.33 0.33 
  Sydney 1.06 0.22 0.01 

5/6/02 Azalea 0.58 0.09 0.04 
  Gandy 1.62 0.12 0.30 
  Sydney 1.01 0.66 0.05 

5/10/02 Azalea 0.25 0.00 0.00 
  Gandy 1.32 0.05 0.03 
  Sydney 1.51 0.07 0.05 

5/14/02 Azalea 0.42 0.03 0.02 
  Gandy 0.82 0.11 0.05 
  Sydney 0.51 0.01 0.00 

5/15/02 Azalea 0.51 0.03 0.00 
  Gandy 1.01 0.08 0.03 
  Sydney 1.38 0.16 0.05 

5/16/02 Azalea 2.17 0.89 0.16 
  Gandy 4.76 2.47 0.46 
  Sydney 0.94 0.90 0.38 

5/17/02 Azalea 0.56 0.03 0.13 
  Gandy 0.69 0.06 0.19 
  Sydney 0.35 0.03 0.01 

5/19/02 Azalea 0.11 0.11 0.10 
  Gandy 0.07 0.11 0.11 
  Sydney 0.66 0.56 0.57 

5/20/02 Azalea 0.87 0.04 0.07 
  Gandy 1.01 0.17 0.06 
  Sydney 0.46 0.04 0.02 

5/23/02 Azalea 0.72 0.04 0.03 
  Gandy 0.72 0.03 0.04 
  Sydney 0.43 0.01 0.01 

5/24/02 Azalea 0.31 0.00 0.00 
  Gandy 0.78 0.04 0.02 
  Sydney 0.60 0.09 0.06 

5/25/02 Azalea 0.28 0.00 0.00 
  Gandy 1.00 0.01 0.02 
  Sydney 0.43 0.06 0.03 
     

Table 17.  Comparison between measured HCl gas concentrations and those 

modeled by EQUISOLV II. 
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Figure 30.  Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for ammonium at the Azalea site. 
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Figure 31.  Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for ammonium at the Gandy site. 
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Figure 32.  Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for ammonium at the Sydney site. 
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Figure 33.  Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for nitrate at the Azalea site. 

 



www.manaraa.com

 

122 

May 14, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000

0.005

0.010

0.015

0.020

0.025
May 16, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
May 15, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

May 17, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05
May 20, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000

0.005

0.010

0.015

0.020

0.025
May 19, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000

0.005

0.010

0.015

0.020

May 23, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Experimental
Modeled Default
Modeled Metastable

May 25, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

May 24, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

May 4, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05
May 10, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05
May 6, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05

 

Figure 34.  Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for nitrate at the Gandy site. 
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Figure 35. Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for nitrate at the Sydney site. 
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Figure 36. Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for chloride at the Azalea site. 
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Figure 37. Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for chloride at the Gandy site. 

 

 



www.manaraa.com

 

126 

May 14, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
May 16, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

0.10
May 15, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

May 17, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05
May 20, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05
May 19, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.000

0.005

0.010

0.015

0.020

0.025

May 23, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

0.10

Experimental
Modeled Default
Modeled Metastable

May 25, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04
May 24, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05

May 4, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
May 10, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08
May 6, 2002

Dp (um)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

Figure 38.  Comparison of experimental, EQUISOLV II default mode and 

EQUISOLV II metastable mode data for chloride at the Sydney site. 
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 The comparison between the measured gaseous species and those 

modeled by EQUISOLV II are displayed in Tables15-17.  Both the default- and 

metastable-modeled results agreed best for the NH3 gas scenario.  The model 

continually under predicted HCl and HNO3 concentrations. 

 The comparisons for the particulate species are categorized by analyte 

and site in Figures 30-38.  Of the three volatile species, ammonium had the 

greatest agreement between the modeled and measured values.  The agreement 

seen for both gaseous NH3 and particulate NH4
+ infers that the system is in or is 

near an equilibrium state.  These particles are primarily fine mode species, which 

have the potential to reach equilibrium in a relative short period of time (Campbell 

et al., 2002; Moya et al., 2002). 

 For both particulate chloride and nitrate, their situations are nearly the 

same.  The modeled and experimental particle data showed some agreement, 

with the metastable mode giving better results.  The model continually over 

predicted particle concentrations and, for nitrate, often resulted in a size 

distribution mode shift.  From the gas results, the modeled metastable mode 

under predicted the gas concentration for the majority of the model runs.  Since 

the modeled gas phase is under predicted and the modeled particle phase is 

over predicted, it appears that the nitrate/nitric acid and chloride/hydrochloric acid 

systems during May 2002 were not at thermodynamic equilibrium.  This is a 

different scenario from the ammonium/ammonia system as chloride and nitrate 

are predominantly coarse mode species. 
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Model Comparison 

 

 The EQUISOLV II model (Jacobson, 1999a) was compared against the 

AIM2 – Model III thermodynamic equilibrium model (Clegg et al., 1998).  The 

main difference between the two models lies in their method of solution.  

EQUISOLV II used analytical equilibrium iterations (equilibrium constants), and 

AIM2 uses Gibbs free energy minimization iterations.  These models were run in 

parallel, both in default and metastable modes, to compare their predicted solid 

and aqueous phase concentrations.  The focus of this study was to determine 

whether or not EQUISOLV II should be run in the metastable mode, in which the 

aerosols are constrained to the aqueous phase, or the default mode in which 

both solid and aqueous aerosols are allowed. 

 A simple system was developed, comprising only Na+, Cl- and NO3
-.  The 

first scenario tested was a 1:1 NaCl:HNO3 molar ratio system and a 1:2 

NaCl:HNO3 system.  The models agreed extremely well at 60% (low) and at 90% 

(high) relative humidities. 

 The systems were expanded to account for NH4
+ and SO4

2-.  The models 

no longer agreed as they did with the simple Na+, Cl- and NO3
- system in the 

default mode.  However, the models were in closer agreement when run in the 

metastable mode.  The compounds treated by each of the models were 

investigated.  AIM2 was found to handle more solid compounds than EQUISOLV 

II.  This is most likely due to the temperature limitations of the models.  Data for 

equilibrium reactions are typically obtained under 25°C conditions.  The wide 
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range of temperatures used by EQUISOLV II limits the number of compounds 

treated by the model because data for many of the equations are not available at 

temperatures other than 25°C. 

 Actual ambient concentrations of Na+, NH4
+, K+, Mg2+, Ca2+, Cl-, NO3

- and 

SO4
2- were used to compare the models under simulated environmental 

conditions.  The AIM2 model does not treat K+, Mg2+ and Ca2+, so EQUISOLV II 

was run with and without those species.  Simulations were run at the ambient 

relative humidity and at both the ambient temperature recorded during sampling 

and at 25°C.  Results indicate the EQUISOLV II model is sensitive to both 

temperature and the presence of K+, Mg2+ and Ca2+.  The models were most 

comparable at 25°C and conditions without those three species.  The EQUISOLV 

II model predicted more aerosol nitrate and chloride than AIM2, which predicted 

higher gas phase concentrations of these species.  Agreement was greatest in 

the metastable mode. 

 Through all of these simulations, the models best agreed in the 

metastable mode.  Modeling in the metastable mode improved the agreement 

between actual and modeled results, as seen in Figures 30-38.  As noted in 

literature, metastable aerosols are ubiquitous and are most likely the prevalent 

form in the Tampa Bay area (Rood et al., 1989). 
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Case Studies  

 

The Partitioning of Nitric Acid to Nitrate  

 

 Atmospheric particulate nitrate is primarily formed from the transfer and/or 

reaction of gaseous nitric acid, HNO3, onto existing particles’ surfaces (Pakkanen 

et al., 1996a).  The most important mechanism for coarse particulate nitrate 

formation is the reaction between nitric acid and sea salt (NaCl) and mineral dust 

(CaCO3) particles. 

 The partitioning of gas phase nitric acid and particle phase nitrate is an 

important process with local environmental implications.  The change from one 

species to another changes the residence times and removal mechanisms and 

rates.  The partitioning from the gas phase to small particles (diameter less than 

10 µm) often decreases the dry deposition locally but can increase the deposition 

over open waters (Pryor and Sorensen, 2000). 

 

EQUISOLV II Model 

 

 The EQUISOLV II model was used to calculate the partitioning of nitrate 

between the particle and gas phases.  The specified model inputs included 
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temperature, relative humidity and varying concentrations of sodium, chloride 

and calcium.  The carbonate affiliated with the calcium was not directly entered 

into the model; instead, it was automatically accounted for by ion balance 

corrections.  The concentration of NaCl and CaCO3 used in the model were 

similar to ambient air concentrations seen in the Tampa Bay area.  The model 

gave predicted gas and particle phase concentrations in its output.  The 

EQUISOLV II model was also used to compute the hygroscopic growth and 

water mass fraction of the particles. 

 The ambient air concentrations (from annular denuder measurements) 

and meteorological data (NOAA, 2003a) were based on the year 2000 averages.  

During this time period, the averaged ambient air concentrations of nitric acid and 

particulate nitrate were 1.2 and 1.7 µg m-3, respectively.  The average sodium 

concentration was 1.3 µg m-3 (or 3.3 µg m-3 as NaCl), and the average calcium 

concentration was 0.5 µg m-3 (or 1.2 µg m-3 as CaCO3). 

 The dry gas and particle fluxes were calculated using Equation 1 

( dVCF ×= ).  The deposition velocities for each species were calculated using 

the integrated NOAA Buoy – Williams model (Bhethanabotla, 2002).  The particle 

diameter was set at 4 µm, which is the approximate modal diameter for the 

particles of interest.  A weighted average of the values for chloride and nitrate 

was used based on the composition of the particle, computing the density-

dependent particle deposition velocity.  The deposition velocity for the gas phase 

was computed specifically for HNO3. 
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Results and Discussion 

 

 The model results revealed that the nitric acid to nitrate partitioning was 

dependent on the ambient air sodium and calcium concentrations, the total 

nitrate in the system (Figure 39) and relative humidity (Figure 40).  Increased 

concentrations of both NaCl and CaCO3 increased the fraction of nitrate in the 

particulate phase (Equation 27).   

total

particle

NO
NO

particletheinNOofFraction
][

][

3

3
3 −

−
− =    (Equation 27) 

However, increased concentration of the total available nitrate (gas plus particle 

phase) reduced the particulate nitrate fraction.  In the NaCl example (Figure 

39a), the nitrate is always divided in equilibrium between both the gas and 

particle phases.  In the CaCO3 example (Figure 39b), the fraction of particulate 

nitrate significantly increased with a linear slope until the nitrate was completely 

in the particle phase.  Gas phase nitric acid was only seen when the particulate 

phase was completely saturated with nitrate, where the remainder was forced to 

the gas phase.  At this saturation point, nitrate and calcium were present in equi-

equivalent amounts, which is the nanoequivalents of calcium equaled the 

nanoequivalents of nitrate.  It was observed that the particulate nitrate was 

preferentially formed in a calcium-rich environment. 
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Figure 39.  The partitioning of HNO3 to nitrate by (a) NaCl and (b) CaCO3 by 

different ambient air concentrations and total nitrate at 78% RH. 
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Figure 40.  The effect of relative humidity on the partitioning of HNO3 to nitrate by 

(a) NaCl and (b) CaCO3, where the total available nitrate was 3 µg m-3.  
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 For NaCl, increased relative humidity increased the fraction of nitrate in 

the particle phase (Figure 40a).  The hygroscopic nature of the NaCl and NaNO3 

particle encouraged the uptake and reaction of nitric acid with increased relative 

humidity.  The hygroscopicity and water solubility for CaCO3 are substantially 

lower than those of NaCl.  As a result, no (or very little) change in the nitrate 

particle formation with changing relative humidity was seen for CaCO3 (Figure 

40b).  In the figure, all three relative humidity scenarios are superimposed onto 

each other, giving one representative line for CaCO3. 

 The concentrations and mass percent of water and the fraction of nitrate 

within the particle as a function of sodium and calcium concentrations for NaCl 

and CaCO3 at 78% relative humidity are displayed in Figure 41.  For NaCl and 

CaCO3, the amount of absorbed water increased as the fraction of particulate 

nitrate and sodium or calcium concentrations increased (Figure 41a-d).  

Therefore, the formation of NaNO3 and Ca(NO3)2 increased the hygroscopicity 

and, hence, the amount of absorbed water in the particle (Grassian, 2002).  The 

water mass percent (Figure 41e-h) for NaCl increased as particulate nitrate 

formation increased.  However, the water mass percent for CaCO3 began to 

decrease as the fraction of particulate nitrate reached 1.0.  As CaCO3 (MW = 100 

g mol-1) is converted to Ca(NO3)2 (MW = 164 g mol-1), the amount of adsorbed 

water increases or remains the same; however, the reflecting water mass 

percent may actually decrease due to the change in molecular weight of the salt. 
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Figure 41.  The concentration and mass percent of water and the fraction of total 

nitrate within the particle for NaCl and CaCO3 at 78% RH. 
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Competitive Partitioning 

 

 The competitive partitioning between NaCl and CaCO3 for nitrate was 

modeled at 78% relative humidity (Figure 42).  When the total available nitrate 

(gas plus particle) was set at 1 µg m-3 for a 0% Na+ and 100% Ca2+ system, the 

fraction of particulate nitrate was 1.0.  As the percent of sodium in the particle 

increased, the fraction of particulate nitrate decreased.  The modeled results 

indicated that sodium partitioned nitrate to the gas phase better than calcium, 

which partitioned nitrate to the particle phase.   

 From the previous figures, it can be concluded that both calcium and 

sodium play a role in the partitioning of nitric acid to nitrate.  For NaCl, there was 

no dominant formation of one species or the other.  Calcium, on the other hand, 

primarily partitioned nitrate to the particle phase, forming gaseous nitric acid only 

when the calcium was completely saturated with particulate nitrate. 

 The partitioning ability of sodium and calcium is directly related to the 

equilibrium constants for these reactions.  From the EQUISOLV II code, the 

equilibrium constants for the NaCl and CaCO3 reactions with HNO3 were 

determined to be: 

)g()s(
k

)g()s( HClNaNOHNONaCl eq + →+ 33    keq = 4.0 

)g()aq(
k

)g()s( HClNaNOHNONaCl eq + →+ 33   keq = 48 

)g()aq(
k

)g()aq( HClNaNOHNONaCl eq + →+ 33   keq = 1.3 

)(2)(2)(23)(3)(3 )(2 lgs
k

gs OHCONOCaHNOCaCO eq ++ →+  16109.6 ×=eqk  
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)(2)(2)(23)(3)(3 )(2 lgaq
k

gs OHCONOCaHNOCaCO eq ++ →+  22106.4 ×=eqk  

)(2)(2)(23)(3)(3 )(2 lgaq
k

gaq OHCONOCaHNOCaCO eq ++ →+  30102.9 ×=eqk  

  Despite the different keq values between the aqueous and solid phase 

reactions, the keq values for the calcium reactions are several orders of 

magnitude different than those for the sodium reactions.  The fundamental 

equilibrium constant parameter explains why calcium preferentially forms 

particulate nitrate over gas phase nitric acid and why calcium carbonate 

partitions nitrate to the particulate phase better than sodium chloride.    
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Figure 42.  The competitive nitrate partitioning effect between NaCl and CaCO3, 

in molar percentages at 78% RH. 
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Environmental Implications 

 

 Deposition rates were used to assess the effects of the partitioning on the 

local environment.  Gas and particle fluxes were calculated using the respective 

model-predicted gas and particle phase concentrations and deposition velocities. 

 Gas phase nitric acid fluxes are displayed for NaCl and CaCO3 in Figure 

43.  Particulate nitrate fluxes are displayed in Figure 44.  For both NaCl and 

CaCO3 scenarios, the gas phase nitric acid contributed to the majority of the local 

nitrogen deposition, with the nitrogen flux increasing as the total available nitrate 

increased.  However, as the sodium or calcium concentration increased, the total 

nitrogen flux decreased (Figure 45).  As a result of the presence of sodium and 

calcium particles, there was a decrease in the local nitrogen flux at conditions 

representative to the Tampa Bay area.  Instead of being directly deposited as 

nitric acid, these 4 µm particles can travel out of the area (~250 km) when 

suspended to a height of 100 m.  This creates a local flux divergence as the 

particles are subject to horizontal transport. 

 The gas phase nitric acid and particulate nitrate fluxes for the NaCl and 

CaCO3 mixture are reported in Figure 46.  The gas phase nitric acid flux 

increased with increasing percent sodium concentrations as calcium preferred to 

have nitrate in the particle phase.  As a result, calcium played a bigger role in 

creating a local nitrogen flux divergence than sodium. 
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Figure 43.  The predicted HNO3 gas flux for the nitric acid partitioning by (a) NaCl 

and (b) CaCO3 at 78% RH. 
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Figure 44.  The predicted nitrate particle flux for the nitrate partitioning by (a) 

NaCl and (b) CaCO3 at 78% RH. 
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Figure 45.  The total (gas + particle) predicted flux for the nitrate partitioning by 

(a) NaCl and (b) CaCO3 at 78% RH. 
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Figure 46.  The predicted (a) nitric acid gas and (b) particulate nitrate flux from a 

molar percent mixture of NaCl and CaCO3 ( )32 48][][ −++ =+ mneqCaNa  at 78% 

RH. 
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The Prediction of Coarse Mode Nitrate from Fine Mode ADS Data 

 

 Until recently, the monitoring of particulate matter around the Tampa Bay 

area only included fine particulate matter, having a diameter based on a cyclone 

inlet with a cutpoint of 2.5 µm (PM2.5) (Poor et al., 2001).  These fine particles are 

responsible for visibility reductions as they scatter and absorb light more 

efficiently than larger particles (Seinfeld and Pandis, 1998).  These smaller 

particles are also responsible for serious health effects and mortality in humans, 

as well as environmental implications (Clarke et al., 1999).  Coarse mode 

particles, however, have been found to contain nitrogen species, and they have 

the potential to have greater environmental implications than fine mode particles 

(Evans and Poor, 2001; Pryor and Barthelmie, 2000b; Pryor and Sorensen, 

2000). 

 Direct atmospheric deposition (wet and dry) of inorganic nitrogen to 

Tampa Bay has been estimated from 1996-1999 to be 7.3 ± 1.3 kg-N ha-1 yr-1 or 

760 ± 140 metric tons yr-1 (Poor et al., 2001).  The dry deposition of nitrogen 

directly to Tampa Bay accounted for 44%, or 3.2 kg-N ha-1 yr-1.  The data used to 

develop these estimates included one-in-six day ambient monitoring of gaseous 

ammonia, nitric acid and sulfur dioxide and fine mode particulate ammonium, 

nitrate and sulfate.  These species were collected using an annular denuder 

system (ADS) at the Gandy Bridge monitoring station (Poor et al., 2001). 

 The goal of this project was to expand the current data set by predicting 

the coarse mode (PM10-2.5) nitrate concentrations from the available PM2.5 data 
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set.  The predicted coarse mode and total concentrations can then be used to 

develop new nitrogen deposition estimates. 

 

Results and Discussion 

 

 Two approaches were used to estimate the coarse mode nitrate 

concentrations.  The first approach estimated the coarse mode nitrate fraction 

from actual coarse and fine samples collected in the field.  The second approach 

used the lognormal particle nitrate size distributions to predict the fine and coarse 

mode fractions.   

 For the first approach, three sets of fine and coarse mode data were used.  

Dichotomous coarse (PM10-2.5) and fine (PM2.5) particle samples were collected 

during October and November 2001 using an R&P dichotomous sampler.  Total 

suspended particles (TSP) were also collected during this campaign using the 

inverted filter pack sampler.  A third set of data was collected during May 2002 

using an annular denuder system (PM2.5) and an open inlet automated particle 

sampler (>PM2.5) run by Texas Tech University (TTU).  Both sets of data were 

collected at the Sydney site during the intensive May 2002 monitoring campaign.   
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Dp  Instrumentation Data Collection Period 

PM2.5 Dichotomous Sampler October 2001 
PM2.5 Annular Denuder System May 2002 

>PM2.5* TTU Automated Sampler May 2002 
PM10 Dichotomous Sampler October 2001 

>PM10* Inverted Filter Pack October 2001 
* True cut point is unknown   

   
Table 18.  Particle size fraction, instrumentation and data collection periods used 

for predicting coarse mode nitrate fractions. 

 

 The samples were used to develop a relationship between the coarse 

(>PM2.5) and fine size fractions (Figure 47).  The samples were compared 

through direct analysis and linear regression.  Figures 48-50 display the linear 

regressions for the dichotomous fine mode and total nitrate (Figure 48), 

dichotomous fine mode and inverted filter pack TSP nitrate (Figure 49), and ADS 

fine mode and TTU coarse mode nitrate (Figure 50).   
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Figure 47.  Nitrate particle size distribution. 

Dichotomous Total NO3
- (umol m-3)

0.00 0.02 0.04 0.06 0.08

D
ic

ho
to

m
ou

s 
Fi

ne
 N

O
3-  (u

m
ol

 m
-3

)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

n = 31
slope = 0.30 + 0.02
standard error = 0.004
R2 = 0.66
October 2001

 

Figure 48.  Linear regression for dichotomous fine mode and total nitrate. 
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Figure 49.  Linear regression for dichotomous fine and the inverted filter pack 

TSP nitrate. 
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Figure 50.  Linear regression for annular denuder system fine and TTU particle 

nitrate.   
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Direct comparison on a per sample basis was done using the dichotomous 

samples and was determined by: 

%
]NO[]NO[

]NO[NitrateModeFine%
.PMCoarse

.PM 100
5233

523 ×
+

= −−

−

 (Equation 28) 

 This direct daily comparison analysis resulted in a percent fine mode nitrates 

summarized in Table 19. 

 

        
Fine Mode 

Nitrate 
Instrumentation

Coarse Mode 
Nitrate 

Instrumentation 

Linear 
Regression 

Results 

Direct 
Comparison 

Results 
Dichot PM2.5 Dichot PM10-2.5 30 ± 2% 31 ± 12% 
Dichot PM2.5 Inverted FP (TSP) 22 ± 2% 21 ± 10% 
ADS PM2.5 TTU sampler 40 ± 2% 48 ± 16% 

    
Table 19.  Percent fine mode nitrate determined using actual coarse and fine 

mode nitrate samples. 

 

 Three different coarse mode particle samplers were used in these 

analyses.  Of the instruments, only the dichotomous sampler had a characterized 

PM10 inlet.  The others were simply open-inlet instruments with no characterized 

cut point.  The Texas Tech University data give the greatest percentage of fine 

mode nitrate, whereas the inverted filter pack gives the smallest.  It is apparent 

that the TTU instrument may have a cut diameter less than 10 µm and the 

inverted filter pack a cut greater than 10 µm.  Due to the uncertainty of the cut 

diameters, only the results from the dichotomous sampler were used in the 

prediction of coarse mode nitrate. 
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 The second approach was performed using lognormal analysis of size-

distributed particulate nitrate, a method used by aerosol scientists for 

representing quantities that cannot have negative values.  The width of the 

distribution is used to characterize the standard deviation of the distribution, and 

the height for the magnitude of the concentration.  Figure 51 displays a typical 

lognormal distribution for particulate nitrate in the Tampa Bay area.  The sample 

was collected at the Gandy site on May 4, 2002 using a MOUDI sampler.   
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Figure 51.  Typical lognormal nitrate size distribution.   

 

The lognormal distributions were developed based on the three-parameter 

lognormal equation using SigmaPlot 2002 version 8.0 by SPSS Inc.: 
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where 
πσ 2

1
=a  and σ=b , the standard deviation of the distribution.  The 

value for ox , the particle diameter at which the distribution peaked, was set at an 

averaged value of 3.15 µm.  The set value of ox  and the resulting standard 

deviation, b, were used in conjunction with the lognormal function in Microsoft 

Excel to compute the fraction of nitrate with 2.5 µm and smaller diameter.  

Results are summarized in Table 20. 

      
Method # Samples Percent Fine Mode Nitrate 

Andersen Cascade Impactor 14 40 ± 2% 
MOUDI Cascade Impactor 38 36 ± 7% 

   
Table 20.  Computed percent fine mode nitrate using lognormal analysis of 

cascade impactor data. 

 

 The Andersen cascade impactor is known to have poor resolution 

between its stages.  As a result, this instrument was not used in the prediction of 

coarse mode nitrate. 

 The dichotomous sample comparison and lognormal analysis method 

results were averaged, giving an approximate value for the percent fine mode 

nitrate of 33%.  This estimate was then applied to the 1996-2002 ADS data to 

determine the coarse mode nitrate concentrations.   
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 The gas and particle over-water dry deposition velocities were calculated 

using the integrated NOAA Buoy – Williams model (Bhethanabotla, 2002) to 

determine the effects of coarse mode nitrate on the local nitrogen flux estimates.  

The averaged over-water deposition velocities for the gas and 3.15 µm diameter 

particulate species were 0.84 ± 0.52 and 0.034 ± 0.013 cm s-1, respectively.  The 

particulate nitrate concentrations and dry deposition fluxes ( dVCF ×= ) as well as 

the gaseous nitric acid fluxes were calculated and are reported in Table 21. 

 

        
Concentration (µg m-3) Flux (kg-N ha-1 yr-1) 

HNO3 1.3 ± 0.9 HNO3  0.76 ± 0.51 
Fine Mode NO3

- 0.80 ± 0.59 CM p-NO3
- 0.04 ± 0.03 

Coarse Mode NO3
- 1.6 ± 1.2 Total p-NO3

- 0.06 ± 0.04 
Total p-NO3

- 2.4 ± 1.8 HNO3 + p-NO3
- 0.82 ± 0.52 

   % CM p-NO3
- 6.0 ± 4.4% 

    % Total p-NO3
- 8.9 ± 6.5% 

    
Table 21.  The predicted nitrate concentrations and resulting over water dry 

deposition fluxes. 

 

Environmental Implications 

 

 From the 1999 dry deposition estimate, the fine mode particulate nitrate 

and nitric acid accounted for 1.9% (or 0.06 kg-N ha-1 yr-1) and 19% (or 0.61 kg-N 

ha-1 yr-1) of the estimated 3.2 kg-N ha-1 yr-1 nitrogen loading.  The remainder 

resulted from gaseous ammonia (72% or 2.3 kg-N ha-1 yr-1) and fine mode 

particulate ammonium (6.6% or 0.21 kg-N ha-1 yr-1) (Poor et al., 2001). 
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 Using the predicted PM10 nitrate concentrations from this study, dry 

nitrogen deposition from 1999 can be estimated at 3.2 kg-N ha-1 yr-1.  Total 

particulate nitrate accounted for 1.9% (or 0.06 kg-N ha-1 yr-1).  This value is 

unchanged from the original estimate, as the original estimate computed the 

nitrogen deposition flux using a dry deposition velocity of 0.1 cm s-1, possibly 

overestimating the particle size.  The new size-dependent particle deposition 

velocity (Dp = 3.15 µm) was recalculated at 0.034 cm s-1.  Despite the change in 

the particulate nitrate concentration from the previous estimate until now, the 

discrepancy in the particle deposition velocity results in an unchanged annual 

flux estimate. 

 

The Formation of Particulate Nitrate  

 

 Experimental studies have shown that supermicron particles, those with a 

diameter greater than 1 µm, containing nitrogen exist in our environment (Evans 

et al., 2002; Pakkanen et al., 1996a; Pryor and Barthelmie, 2000b; Pryor and 

Sorensen, 2000).  The origin of these compounds is unknown, but analysis 

reveals the possible affiliation with mineral dust or sea salt particles from the 

reactions with gaseous nitric acid (Reactions 1 and 3) (Clarke et al., 1999; de 

Leeuw et al., 2001; Dentener et al., 1996; Evans and Poor, 2001; Goodman et 

al., 2000; Pakkanen, 1996; Tabazadeh et al., 1998; Ten Brink, 1998; Zhuang et 

al., 1999a).   
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 Because of their size, macroparticles have a larger deposition velocity and 

shorter residence time than smaller particles (Pakkanen et al., 1996a).  The 

formation of nitrate macroparticles may cause increased local nitrogen deposition 

and possibly increased eutrophication problems if deposited to surface waters.  

Using published uptake coefficients (Abbatt and Washewsky, 1998; Guimbaud et 

al., 2002a; Hanisch and Crowley, 2001) and a nitrate accumulation model 

(Kerminen and Wexler, 1995) with our recent measurements of inorganic aerosol 

distribution made near Tampa Bay, the formation of NaNO3 and Ca(NO3)2 is 

estimated from reactions of NaCl, sea salt and mineral dust (CaCO3) particles 

with nitric acid.  This was a theoretical exercise to determine the potential for 

nitrogen-containing coarse particles to contribute significantly to the atmospheric 

nitrogen deposition to the Tampa Bay estuary. 

 

Methods 

 

 To study the theoretical formation of particulate nitrate, a closed system 

approach was adopted and assumed externally mixed particles of multiple size 

categories.  Sodium and calcium were used as the non-volatile species.  The 

system was initialized with a fixed amount of nitrogen (as gas phase nitric acid), 

which was allowed to distribute between the gas phase and across all particle 

bins.  The model (described below) allowed the particulate nitrate concentrations 

to be calculated in a time-step process.  At each time interval, the sodium, 

calcium and nitric acid concentrations were adjusted to account for the formation 
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of particulate nitrate.  The time steps were allowed to continue until the 

particulate nitrate concentrations reached thermodynamic equilibrium with nitric 

acid.   

 Experimental values were used to initialize the system.  The average 

annual nitric acid concentration was taken from one-in-six day annular denuder 

system (ADS) measurements made at the Gandy site in 2000.  Average 

particulate sodium, calcium and nitrate size distributions and concentrations were 

taken from 37 micro-orifice uniform deposit impactor (MOUDI) measurements 

made at three (Azalea Park, Gandy and Sydney) sites in 2002.  All of the 

nitrogen in the system (particulate nitrate plus nitric acid) was initialized as nitric 

acid.  The geometric mean of seven MOUDI collection bins was used for the 

particle classification.  The particle diameters compared were: 0.2, 0.49, 0.77, 

1.4, 2.5, 4.3 and 7.6 µm.  The species concentrations used in this modeling 

exercise are listed below in Table 22. 

               
GeoMean Bin Max ]Na[ +  ]Ca[ 2+  ]NO[ 3

−  ]HNO[ 3    
(µm) (µm) (µmol m-3) (µmol m-3) (µmol m-3) (µmol m-3)   
0.20 0.40 5.0E-05 3.0E-04 3.0E-02 2.0E-02   
0.49 0.60 8.0E-05 1.1E-04     
0.77 1.0 5.5E-04 1.5E-04     
1.4 2.0 4.0E-03 8.2E-04 Total nitrogen:   
2.5 3.2 9.4E-03 1.8E-03 0.05 µmol m-3   
4.3 5.7 2.3E-02 4.0E-03     
7.6 10 1.4E-02 2.6E-03        

       
Table 22.  Averaged concentration from 37 MOUDI experimental samples and 

year 2000 ADS measurements. 
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Deposition Velocities 

 

 The over water deposition velocities of each particle size groups and 

gaseous nitric acid were calculated using the integrated NOAA Buoy-Williams 

model (Bhethanabotla, 2002) and the year 2000 hourly meteorological data.  The 

integrated NOAA Buoy-Williams model is a combination of a two-layer multiple-

path model for dry deposition of particles to surface waters (Williams) and an 

iterative bulk exchange model for momentum, heat and moisture (NOAA Buoy).  

The model includes the effects of wave breaking, particle hygroscopic growth 

and turbulent heat flux.  The dry deposition velocities were calculated on the 

basis of the turbulent heat transfer and gravitational settling of particles.  The 

meteorological data used in the model included surface weather and water 

observations, which were obtained from the NOAA National Climatic Data Center 

(NOAA, 2003a) and the NOAA National Ocean Service’s Center for Operational 

Oceanographic Products and Services (NOAA, 2003b), respectively.  Surface 

weather observations were collected at the Tampa International Airport, located 

approximately 11 km from the Gandy sampling site.  Water measurements were 

taken at NOAA’s Clearwater Beach station, located on the Gulf of Mexico 

coastline approximately 30 km from the Gandy site.  The meteorological data 

were divided into three categories based on wind speed.  The low (<2.4 m s-1) 

and high (>6.0 m s-1) wind speeds were classified as the respective 25th and 75th 

percentile winds during 2000.  The midrange wind speeds were those between 
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2.4 and 6.0 m s-1.  The resulting dry deposition values were averaged, giving an 

annual deposition velocity (Table 23). 

  
Dp Deposition Velocity, Vd (cm s-1) 

(µm) Low WS Mid WS High WS 
0.20 0.002 ± 0.001 0.006 ± 0.003 0.03 ± 0.02 
0.49 0.003 ± 0.002 0.005 ± 0.002 0.02 ± 0.02 
0.77 0.006 ± 0.004 0.007 ± 0.004 0.02 ± 0.02 
1.4 0.006 ± 0.003 0.007 ± 0.003 0.02 ± 0.02 
2.5 0.020 ± 0.000 0.02 ± 0.00 0.03 ± 0.02 
4.3 0.06 ± 0.00 0.06 ± 0.00 0.07 ± 0.06 
7.6 0.17 ± 0.00 0.17 ± 0.00 0.25 ± 0.17 

HNO3 0.28 ± 0.17 0.67 ± 0.23 1.48 ± 0.41 
    

Table 23.  Annual averaged over water dry deposition velocities with their 

respective standard deviations. 

 

Residence Times and Distances Traveled 

 

 The distance a particle will travel is dependent on the particle’s deposition 

velocity, starting height and wind speed.  For all scenarios tested, the starting 

height was set at 100 m.  The traveling distance, TD, was calculated using: 

VelocityDeposition
HeightStartingSpeedWindTD ×

=     (Equation 30) 

 The traveling distance was calculated for three different wind scenarios 

during 2000.  Table 24 displays the distance traveled by a particle at the three 

wind scenarios.  The residence time, RT, of a particle (Table 24) is the time 

required by a particle to deposit through dry deposition to the surface of a body of 



www.manaraa.com

 

158 

water.  It is only dependent on the starting height and the deposition velocity of 

the particle, and it was calculated using: 

VelocityDeposition
HeightStartingRT =       (Equation 31) 

 

  
Dp  Distance Traveled (km) Residence Time (hr) 

(µm)  Low WS Mid WS High WS Low WS Mid WS High WS 
0.20  730 7100 3700 1300 470 110 
0.49  4800 8600 5200 840 570 160 
0.77  2800 6200 5400 480 410 170 
1.41  2800 6000 5200 490 400 160 
2.53  790 2000 3000 140 130 91 
4.27  290 750 1200 50 49 38 
7.55   94 250 350  16 16 11 
        

Table 24.  Traveling distances and residence times for low (<2.4 m s-1), mid (2.4-

6.0 m s-1) and high (>6.0 m s-1) wind speeds. 

 

Reaction with Nitric Acid 

 

 The rate at which particulate nitrate is formed from nitric acid depends on 

several interacting processes (Pakkanen et al., 1996a).  Under the assumption of 

spherical particles and surface-limited chemical reactions, the rate at which 

nitrate accumulates into a single particle, 
3NOI  (mol s-1) can be obtained from the 

relation (Kerminen and Wexler, 1995; Pakkanen et al., 1996a): 
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β+

π
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1
][2

)( )(33

3

gpHNO
pNO

HNOdD
dI     (Equation 32) 

where psHNO dkD ÷=β
3

2 , pd  is the particle diameter, DHNO3 (m2 s-1) is the 

diffusion coefficient of nitric acid, ][ 3HNO  (mol m-3) is the gas phase 

concentration, and ks (m s-1) is the surface rate constant for the conversion of 

HNO3 to particulate nitrate ( 4÷γ= cks , where c  is the molecular speed of 

HNO3 and γ  is the reaction uptake coefficient). 

 The total concentration of particulate nitrate as a result of uptake of nitric 

acid by sea salt over a certain size range, j, can be obtained by integrating 
3NOI  

over all particles in j and time, Tj (s) (Pakkanen et al., 1996a): 
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The nitrate concentration as a result of the uptake of nitric acid by calcium in 

mineral dust can be obtained by (Pakkanen et al., 1996a): 
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  (Equation 34) 

where ][ +Na  (µmol m-3) is the concentration of sodium, ][ 2+− Canss  (µmol m-3) 

is the concentration of non-sea salt calcium (that affiliated with mineral dust), Mi 

(g mol-1) is the molar mass of species i, dp,j (µm) is the representative particle 

diameter in the size range, ρp (kg m-3) is the particle density and fi is the mass 

fraction of sodium in sea salt and calcium in mineral dust particles. 
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 The underlying assumptions for this model include (Pakkanen, 1996): (1) 

These particles consist of two externally mixed particle types on which nitrate is 

formed: sea salt and mineral dust.  (2) The water-soluble sodium originates only 

from sea salt and calcium from mineral dust.  (3) Particles of the same type and 

size have roughly the same composition.  (4) The size distribution function is 

temporally constant over the size range.  (5) The heterogeneous conversion of 

NO2 and other nitrate precursor gases is negligible compared to nitric acid.  (6) 

The nitrate accumulation in both sea salt and mineral dust particles is limited by 

the rate ks.   

 This model considers only sodium and calcium as reactive species for 

nitric acid and is limited by not considering the reactions between nitric acid and 

other particulate matter types.  However, since little or no data are available for 

the reactions between nitric acid and other species, they were excluded.  The 

particle density and mass fraction were held constant for each time step.  The 

hygroscopicity for NaNO3 closely resembles that of NaCl, allowing for the 

assumption that the mass fraction and density remained constant.   

 The uptake coefficients for HNO3 on NaCl, sea salt and CaCO3 have been 

determined experimentally.  For NaCl, the uptake coefficient was characterized 

by the value 20.>γ  (Abbatt and Washewsky, 1998). This value was determined 

using an aerosol kinetics flow tube technique at room temperature with 

deliquescent NaCl at 75% relative humidity.  Other uptake coefficients for NaCl 

have been determined using a low-pressure Knudsen cell flow reactor: 

]10)6.04.1([ 2−×±=γ  (Beichert and Finlayson-Pitts, 1996) and 
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]10)3.08.2([ 2−×±=γ  (Fenter et al., 1994).  The Knudsen cell flow reactor is 

limited to very low relative humidity conditions.  The value determined by Abbatt 

and Waschewsky (1998) was used in this modeling and is considered a lower 

limit for the uptake of HNO3 by NaCl as the average relative humidity for the 

Tampa Bay area is approximately 80%.   

 The uptake coefficient for deliquescent sea salt was estimated to be 

20.050.0 ±=γ  at 55% relative humidity (Guimbaud et al., 2002a).  The 

difference between the coefficients for sea salt and NaCl lie in the composition of 

sea salt.  Sea salt contains hygroscopic hydrates, such as MgCl2•6H2O, which 

provide additional surface waters for the uptake and reaction of HNO3.  Other 

uptake coefficient values have been determined for sea salt by De Haan and 

Finlayson-Pitts (1997) ]2.0[ ≅γ  using a Knudsen cell at low relative humidity.   

 Uptake coefficients for CaCO3 have been determined under a few 

conditions.  At 0% and 20% relative humidities, they were estimated to be 

4104.2 −×=γ  and 3105.2 −×=γ , respectively (Goodman et al., 2000; Grassian, 

2002).  Hanisch and Crowley (2001) determined the uptake coefficients for “dry” 

heated and “damp” unheated CaCO3 to be 210)5.210( −×±=γ  and 

210)5.418( −×±=γ , respectively.  The value estimated under “damp” conditions 

by Hanisch and Crowley (2001) is thought to be more relevant under 

atmospheric conditions.  Their reported value is a considered a lower limit for the 

uptake of HNO3 by CaCO3. 
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 The mass fractions of sodium or calcium in the original NaCl, sea salt or 

mineral dust particles were estimated using the EQUISOLV II model, an aerosol 

thermodynamic equilibrium model (Campbell et al., 2002; Jacobson, 1999a).  

Input files were created using the composition of dry particles and varying 

temperature and relative humidity.  EQUISOLV II calculated the equilibrium 

concentrations of the particles, including the amount of absorbed water.  From a 

series of modeling runs, temperature was not found to have a significant effect 

on the mass fraction of sodium or calcium.  However, the relative humidity had 

the greatest effect on the mass fraction.  Due to the hygroscopicity of the salts, 

the quantity of adsorbed water depends on the relative humidity.  The mass 

fraction was calculated for four different relative humidity scenarios.  At 60% 

relative humidity, the particles were treated as dry solids, while those above 75% 

relative humidity were deliquescent aerosols.  Table 25 gives the mass fraction of 

sodium and calcium within NaCl, sea salt and mineral dust particles at varying 

relative humidities. 

         
  Mass Fraction 

RH Na+ Ca2+ 
(%) in NaCl in sea salt  in dust 
60 0.39 0.19 0.15 
78 0.10 0.07 0.13 
90 0.06 0.05 0.11 
95 0.03 0.03  0.09 

    
Table 25.  Mass fractions of sodium and calcium in NaCl, sea salt and mineral 

dust. 
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 As with the mass fraction, the density of the particles changes with the 

uptake of water.  The densities were calculated as follows.  The derivation of 

these equations is given in Appendix 3.  The density of the aqueous phase of the 

particle was calculated using: 

w

w

s

s
aq ww

ρ
+

ρ

=ρ
1        (Equation 35) 

where ρs and ρw  are the respective densities of the solute (salt) and water and 

ws and ww are the respective mass fractions of the solute and water.  The density 

of the entire aerosol particle was calculated using: 

solid

solid

aq

aq
part FF

ρρ

ρ
+

=
1        (Equation 36) 

where Faq and Fsolid are the respective mass fractions of the aqueous and solid 

phases within the entire particle and ρaq and ρsolid are the respective densities of 

the aqueous and solid phases.  The resulting density values are listed in Table 

26. 

        
RH Density (g cm-3) 
(%) NaCl Sea salt CaCO3 
60 1.3 2.2 1.3 
78 1.2 1.2 1.2 
90 1.1 1.1 1.1 
95 1.0 1.1 1.1 

    
Table 26.  Calculated densities for NaCl, sea salt and CaCO3 at varying relative 

humidities. 
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 The Equisolv II model was also used to compute the thermodynamic 

equilibrium concentrations of particle nitrate.  The modeled results were 

dependent on the relative humidity and the composition of the particle.  The 

reactions of NaCl and sea salt with nitric acid were greatly affected by the 

equilibrium, as the predicted keq is several orders of magnitude smaller than that 

of mineral dust.  The large keq value for mineral dust did not limit the reaction 

between CaCO3 and nitric acid, which was allowed to react until the particle was 

completely saturated with nitrate. 
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Figure 52.  Time-resolved nitrate formation for NaCl. 
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Figure 53.  Time-resolved nitrate formation for sea salt. 
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Figure 54.  Time-resolved nitrate formation for CaCO3. 
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Results and Discussions 

 

 The model was run in time steps until the particulate phase reached the 

thermodynamic equilibrium concentration of nitrate that was predicted by the 

EQUISOLV II model.  The results are given in Figures 51-53 for NaCl, sea salt 

and CaCO3, respectively. 

 The concentration of particulate nitrate was extrapolated at the particle 

residence time from the time-resolved curves given in Figures 51-53.  For NaCl 

and sea salt, the particles reached the equilibrium nitrate concentration at speeds 

much faster than their residence times.  For calcium, the extrapolated 

concentrations were compared to the saturation equation: 

%100])[]([Reacted% )(3(mod)3 ×÷= −−
equilNONO    (Equation 37) 

where ][ (mod)3
−NO  (µmol m-3) is the model-predicted nitrate concentration at a 

given relative humidity, and ][ )(3
−

equilNO  (µmol m-3) is the equilibrium particle 

nitrate concentration as predicted by the EQUISOLV II model.  This was done to 

determine the extent of the reaction at the residence time.  Those particles with a 

nitrate concentration less than calcium (in microequivalents) were assumed to 

react only partially.  The results are given in Table 27. 
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Percent Reacted Nitrate at Residence Time (Time of Deposition) 

Ca2+ in mineral dust          
  Low Wind Speed Mid Wind Speed High Wind Speed 

Dp 60% 78% 90% 95%  60% 78% 90% 95%  60% 78% 90% 95%
0.2                           
0.5 100% Reacted 
0.8                           
1.4                           
2.5                           
4.3                           
7.6 94% 97% 99% 99%  94% 96% 99% 99%  85% 90% 95% 97%

             
Table 27.  The percent of particulate nitrate formation based on an initial height 

of 100 m at the residence time and different ambient relative humidity values. 

 

 Under the given conditions, the majority of the particles reached the nitrate 

equilibrium concentration at or before their residence time.  The uptake of nitrate 

was greatest at 95% relative humidity and low wind speed conditions.  The 

largest particle size bin collected particles up to 10 µm in diameter.  According to 

Table 27, these particles contain a significant amount of nitrate.   

 Figure 55 displays the typical size distribution for sodium, calcium and 

nitrate in the Tampa Bay area.  All three species are primarily in the coarse 

fraction, with the distribution beginning at ~0.5 µm.  Upon reaction with sodium or 

calcium, particulate nitrate exhibits a similar size distribution as its parent NaCl or 

CaCO3 particle.   
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Figure 55.  Typical size distribution of sodium, calcium and nitrate in the Tampa 

Bay area.   

 

 The aerosol sampling devices used at our bayside sampling site have an 

upper collection limit of 10 µm particles.  Several studies have been conducted 

measuring the size distribution of marine aerosol (de Leeuw, 1986; Haaf and 

Jaenicke, 1980; Hoppel et al., 1989; Meszaros and Vissy, 1974; Seinfeld and 

Pandis, 1998).  These studies reveal four major modes of marine aerosol: (a) 

0.05-0.06, (b) 0.2-0.3, (c) 6-7 and (d) 11-15 µm.  Continental aerosol size 

distribution has also been characterized (Jaenicke, 1993), revealing three major 

modes: (a) 0.01-0.02, (b) 0.15-0.25 and (c) 6-7 µm. 

 In Figure 55, the particle size distribution at 10 µm begins to show what 

may be the beginning of the largest mode (11-15 µm) of marine aerosol.  
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Particles with a geometric mean diameter of 15 µm have an approximate 

deposition velocity and residence time of 0.7 cm s-1 and 4 hr, respectively.  From 

Figures 51-52, all particles in the largest size bin reached equilibrium in less than 

8 hours, with the equilibrium time significantly less for deliquescent aerosols.  If 

the modeling exercises were to continue for the largest mode of marine aerosols, 

results may indicate that the particles would contain a significant amount of 

nitrate even though they may not reach complete equilibrium before their 

residence time.  

 

Impact on Nitrogen Loading  

 

 To determine if these particles could have an environmental impact, their 

effect on the total nitrogen loading through dry deposition was examined.  

Particle and gas deposition velocities were calculated using the integrated NOAA 

Buoy-Williams model (Bhethanabotla, 2002).  The dry deposition flux was 

calculated using Equation 1, where dVCF ×= . 

 During this modeling exercise, 0.05 µmol m-3 of nitrate was partitioned 

between the gas and particle phases.  If all of this nitrate were to remain in the 

gas phase as nitric acid, the resulting fluxes for the low, mid and high wind speed 

conditions would be 0.61, 1.5 and 3.3 kg-N ha-1 yr-1, respectively.  However, 

particles have lower deposition velocities and longer residence times than nitric 

acid, giving them the ability to create a flux divergence as nitric acid is transferred  
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Nitric Acid and Particulate Nitrate Flux (kg-N ha-1 yr-1) 

Na+ in NaCl Low Wind Speed Mid Wind Speed High Wind Speed 
Dp Relative Humidity Relative Humidity Relative Humidity 

(µm) 60% 78% 90% 95% 60% 78% 90% 95% 60% 78% 90% 95%
0.2 2 E-6 3 E-6 3 E-6 3 E-6 6 E-6 7 E-6 8 E-6 7 E-6 2 E-5 3 E-5 3 E-5 3 E-5
0.5 5 E-6 6 E-6 7 E-6 7 E-6 7 E-6 9 E-6 1 E-5 1 E-5 3 E-5 3 E-5 4 E-5 3 E-5
0.8 6 E-5 7 E-5 8 E-5 8 E-5 7 E-5 8 E-5 1 E-4 9 E-5 2 E-4 2 E-4 2 E-4 2 E-4
1.4 4 E-4 5 E-4 6 E-4 6 E-4 5 E-4 6 E-4 7 E-4 7 E-4 1 E-3 2 E-3 2 E-3 2 E-3
2.5 4 E-3 4 E-3 5 E-3 5 E-3 4 E-3 5 E-3 5 E-3 5 E-3 5 E-3 7 E-3 8 E-3 7 E-3
4.3 2 E-2 3 E-2 3 E-2 3 E-2 2 E-2 3 E-2 3 E-2 3 E-2 3 E-2 4 E-2 4 E-2 4 E-2
7.6 5 E-2 5 E-2 6 E-2 6 E-2 5 E-2 5 E-2 6 E-2 6 E-2 7 E-2 8 E-2 9 E-2 9 E-2

Total Particle 0.07 0.09 0.1 0.1 0.07 0.09 0.1 0.1 0.11 0.13 0.15 0.14
Gas + Particle 0.42 0.38 0.35 0.36 0.91 0.8 0.7 0.74 1.95 1.69 1.46 1.55
% Reduction 69% 62% 57% 59% 61% 53% 47% 49% 59% 51% 44% 47%

Na+ in sea salt Low Wind Speed Mid Wind Speed High Wind Speed 
Dp 60% 78% 90% 95% 60% 78% 90% 95% 60% 78% 90% 95%
0.2 3 E-6 3 E-6 4 E-6 3 E-6 8 E-6 9 E-6 9 E-6 9 E-6 3 E-5 4 E-5 4 E-5 4 E-5
0.5 7 E-6 8 E-6 8 E-6 8 E-6 1 E-5 1 E-5 1 E-5 1 E-5 4 E-5 4 E-5 4 E-5 4 E-5
0.8 9 E-5 9 E-5 1 E-4 1 E-4 1 E-4 1 E-4 1 E-4 1 E-4 2 E-4 3 E-4 3 E-4 3 E-4
1.4 6 E-4 7 E-4 7 E-4 7 E-4 7 E-4 8 E-4 9 E-4 8 E-4 2 E-3 2 E-3 2 E-3 2 E-3
2.5 5 E-3 6 E-3 6 E-3 6 E-3 5 E-3 6 E-3 6 E-3 6 E-3 8 E-3 8 E-3 9 E-3 9 E-3
4.3 3 E-2 4 E-2 4 E-2 4 E-2 3 E-2 4 E-2 4 E-2 4 E-2 4 E-2 5 E-2 5 E-2 5 E-2
7.6 6 E-2 7 E-2 8 E-2 7 E-2 6 E-2 7 E-2 8 E-2 7 E-2 9 E-2 1 E-1 1 E-1 1 E-1

Total Particle 0.1 0.11 0.12 0.12 0.1 0.11 0.12 0.12 0.15 0.16 0.18 0.17
Gas + Particle 0.34 0.32 0.29 0.3 0.68 0.61 0.53 0.56 1.41 1.26 1.07 1.14
% Reduction 56% 52% 48% 49% 45% 41% 35% 37% 43% 38% 32% 35%
Ca2+ in dust Low Wind Speed Mid Wind Speed High Wind Speed 

Dp 60% 78% 90% 95% 60% 78% 90% 95% 60% 78% 90% 95%
0.2 6 E-5 6 E-5 6 E-5 6 E-5 2 E-4 2 E-4 2 E-4 2 E-4 7 E-4 7 E-4 7 E-4 7 E-4
0.5 3 E-5 3 E-5 3 E-5 3 E-5 5 E-5 5 E-5 5 E-5 5 E-5 2 E-4 2 E-4 2 E-4 2 E-4
0.8 8 E-5 8 E-5 8 E-5 8 E-5 9 E-5 9 E-5 9 E-5 9 E-5 2 E-4 2 E-4 2 E-4 2 E-4
1.4 4 E-4 4 E-4 4 E-4 4 E-4 5 E-4 5 E-4 5 E-4 5 E-4 1 E-3 1 E-3 1 E-3 1 E-3
2.5 3 E-3 3 E-3 3 E-3 3 E-3 3 E-3 3 E-3 3 E-3 3 E-3 5 E-3 5 E-3 5 E-3 5 E-3
4.3 2 E-2 2 E-2 2 E-2 2 E-2 2 E-2 2 E-2 2 E-2 2 E-2 3 E-2 3 E-2 3 E-2 3 E-2
7.6 4 E-2 4 E-2 4 E-2 4 E-2 4 E-2 4 E-2 4 E-2 4 E-2 5 E-2 5 E-2 6 E-2 6 E-2

Total Particle 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.09 0.09 0.09 0.09
Gas + Particle 0.44 0.44 0.44 0.44 0.97 0.97 0.97 0.97 2.12 2.11 2.1 2.1 
% Reduction 72% 72% 72% 72% 65% 65% 65% 65% 64% 64% 64% 64%

             
Table 28.  The calculated nitrogen over water dry deposition flux. 
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to the particle phase.  The resulting particle and total flux values are reported in 

Table 28. 

 Due to their relatively higher sodium or calcium concentration and greater 

deposition velocity, particles 4.3 µm and greater contributed to the majority of the 

particle dry deposition flux, especially when the relative humidity was ≥ 90%.  

The gas phase nitric acid dominated the total flux and was greatest at high wind 

speed conditions.  Low ambient concentrations of calcium resulted in lower 

nitrogen flux contributions from mineral dust with respect to sea salt or NaCl. 

 Flux divergence of HNO3 in the marine boundary layer has been modeled 

by Pryor and Sorensen (2000) to determine the importance of nitric acid 

reactions on sea salt particles.  Their results indicated that under near-neutral 

stability and wind speeds between 3.5 and 10 m s-1, the transfer of nitric acid to 

the particle phase decreased the deposition velocity of nitrogen by over 50%.  

This transfer to the particle phase led to greater horizontal transport prior to 

deposition of the nitrogen particles.  For low and high wind speeds (<3.5 and >10 

m s-1), the transfer of nitric acid to the particle phase increased the deposition 

rate and decreased the horizontal transport. 
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Conclusions  

 

 A better understanding of the characteristics and formation of particulate 

nitrate is essential for the development of nitrogen loading estimates and control.  

Nitrogen particle size distributions have been identified and investigated during 

the course of this study.   

 Through a network of ambient air sampling, a snapshot of our local 

environment was created giving us estimates of particle concentrations and size 

distributions.  The data collected during a series of intensive monitoring 

campaigns allowed the formation and characterization of the nitrate particles to 

be deduced.  This work researched the interaction between nitric acid and sea 

salt, focusing on the chemistry and its effect on the local nitrogen deposition 

estimates.  

 The partitioning of nitric acid to particulate nitrate was examined for NaCl 

and CaCO3.  Both salts exhibited an increase in particulate nitrate formation with 

an increase in sodium or calcium and total available nitrate concentrations in the 

system.  The extent of particulate nitrate formation was directly related to each 

equation’s equilibrium constant.  Calcium has an equilibrium constant several 

orders of magnitude greater than sodium, partitioning nitrate to the particle phase 

until its saturation concentration.  The water content of the particles was 
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examined.  Both nitrate salts were more hygroscopic than their parent salt.  As 

nitrate was partitioned to the particle, the amount of absorbed water increased.  

Nitrogen dry deposition flux estimates were calculated.  For both NaCl and 

CaCO3 scenarios, the gas phase nitric acid contributed to the majority of the local 

nitrogen deposition with the nitrogen flux increasing as the total available nitrate 

increased.  However, as the sodium or calcium concentration increased, the total 

nitrogen flux decreased.  The particles created a local nitrogen flux divergence as 

they have longer residence times and greater horizontal transport. 

 The coarse mode particulate nitrate was predicted using fine mode nitrate 

data and new dry deposition estimates were calculated.  Analysis from 

dichotomous samples and lognormal distributions obtained with a cascade 

impactor resulted in an approximate value for percent fine mode (PM2.5) nitrate of 

33%.  The coarse mode (PM10-2.5) nitrate accounted for 0.04 of the 0.06 kg-N ha-1 

yr-1 of the dry deposition flux.  The gas plus particle dry deposition flux was 

estimated at 3.2 kg-N ha-1 yr-1.  This value is unchanged from the previous 

estimate, but it was calculated using coarse mode particulate concentrations and 

size-dependent particle deposition velocities. 

 The theoretical formation of particles nitrate from the reaction of nitric acid 

with NaCl, sea salt and mineral dust (CaCO3) was estimated using a nitrate 

accumulation model and a thermodynamic equilibrium model.  The extent of the 

reaction for NaCl and sea salt was limited to the predicted equilibrium nitrate 

concentration, as the keq values for the NaCl and sea salt reactions are relatively 

small when compared to that of mineral dust.  The equilibrium concentration was 
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determined to be dependent on the relative humidity.  Size distributions for 

marine and mineral dust aerosols were used to determine the major modes for 

these species.  Marine aerosols were found to have a macroparticle mode 

greater than the cutoff of our instruments.  Ambient sodium and calcium 

concentrations are unavailable for particles greater than 10 µm.  However, the 

use of this modeling has inferred that these particles, when mixed with urban air, 

may contain a significant amount of nitrate despite their relatively short residence 

time.  The particle contribution to the nitrogen dry deposition flux was examined.  

The gas phase nitric acid contributed to the majority of the nitrogen dry 

deposition flux, with particles only contributing a small percentage.  The highest 

particle contribution occurred under high humidity and high wind speed 

conditions.  However, for mineral dust, the low ambient concentrations of calcium 

resulted in lower particulate nitrate concentrations with respect to sodium.  Our 

work was found to be consistent with that of others, where the transfer of nitric 

acid to particle phase nitrate decreased the deposition of locally produced 

species, as the particles have greater horizontal transport and residence times. 
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Appendix 1:  Meteorological Data 

 

                                 
  Temp (°C)  RH (%)    Temp (°C)  RH (%) 
  Avg Min Max  Avg Min Max    Avg Min Max   Avg Min Max

10/10/01 26 21 30  69 46 84  11/1/01 25 21 29  73 51 90 
10/11/01 27 22 31  68 42 87  11/2/01 25 21 29  84 65 96 
10/12/01 26 21 31  68 50 87  11/3/01 26 21 31  76 51 94 
10/13/01 27 22 31  68 51 84  11/4/01 24 21 27  78 62 91 
10/14/01 27 23 30  87 72 97  11/5/01 20 17 23  73 59 87 
10/15/01 26 21 30  71 51 94  11/6/01 20 14 26  60 43 78 
10/16/01 25 21 29  74 50 87  11/7/01 19 13 24  67 50 87 
10/17/01 19 14 24  57 44 75  11/8/01 19 13 25  73 54 90 
10/18/01 22 14 29  65 46 81  11/9/01 19 14 24  78 55 100
10/19/01 25 19 31  75 57 91  11/11/01 19 13 25  74 45 97 
10/20/01 27 23 31  80 57 94  11/12/01 21 16 27  65 45 84 
10/21/01 27 23 30  88 72 97  11/13/01 21 16 27  82 50 96 
10/24/01 27 24 30  89 72 97  11/14/01 20 18 22  83 68 91 
10/26/01 20 15 25  47 32 91  11/15/01 20 18 22  79 73 90 
10/27/01 16 12 20  42 28 62  11/16/01 21 16 27  65 49 81 
10/28/01 16 10 21  56 42 77  11/17/01 22 15 28  68 53 87 
10/30/01 21 16 26  72 58 81  11/18/01 23 18 27  76 50 93 
10/31/01 22 17 27   72 54 87  11/19/01 23 18 27   81 52 93 

                 
Table 29.  Temperature and relative humidity data for October - November 2001. 
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Appendix 1: (Continued) 

               
  Temp (°C) RH (%) 
  Avg Min Max  Avg Min Max 

5/2/02 27 24 31 76 59 97 
5/4/02 28 23 32 70 52 91 
5/6/02 28 24 33 68 41 90 

5/10/02 28 24 31 61 44 84 
5/14/02 26 22 30 60 48 71 
5/15/02 26 22 32 53 39 76 
5/16/02 27 24 33 71 40 94 
5/17/02 28 25 32 69 46 89 
5/19/02 22 18 26 79 63 100 
5/20/02 23 18 28 55 45 71 
5/23/02 26 20 31 54 35 80 
5/24/02 26 20 31 50 32 78 
5/25/02 26 21 30 53 37 78 
5/31/02 27 23 32  70 47 91 

       
Table 30.  Temperature and relative humidity data for May 2002 Azalea Park 

sampling site. 

               
  Temp (°C) RH (%) 
  Avg Min Max  Avg Min Max 

5/4/02 26 24 30 76 56 86 
5/6/02 28 24 33 67 44 88 

5/10/02 28 24 32 61 42 82 
5/14/02 25 21 29 63 55 70 
5/15/02 27 22 31 50 35 76 
5/16/02 26 23 32 74 43 91 
5/17/02 27 24 31 71 48 87 
5/19/02 21 17 25 81 74 87 
5/20/02 22 18 28 58 45 72 
5/23/02 25 21 30 54 33 74 
5/24/02 25 20 31 52 30 78 
5/25/02 26 22 29 50 37 68 
5/31/02 26 22 31  73 54 89 

       
Table 31.  Temperature and relative humidity data for May 2002 Gandy sampling 

site. 
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Appendix 1: (Continued) 

               
  Temperature (ºC) Relative Humidity (%) 
  Avg Min Max  Avg Min Max 

5/6/02 27 22 35 77 44 99 
5/10/02 29 21 35     
5/14/02 25 19 36 66 53 77 
5/15/02 26 20 32 62 39 89 
5/16/02 27 23 33 79 51 99 
5/17/02 28 22 35 75 38 99 
5/19/02 22 16 28 88 70 97 
5/20/02 21 16 28 69 53 81 
5/23/02 25 19 31 64 39 93 
5/24/02 25 17 31 63 35 98 
5/25/02 25 18 30  65 41 95 

       
Table 32.  Temperature and relative humidity for May 2002 Sydney sampling 

site. 



www.manaraa.com

 

197 

Appendix 2.  Size Distributions and Ion Ratios from May 2002 
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Figure 56.  Size distributions for May 10, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.79 0.69 0.73 
NO3

-:Na+ 0.41 0.55 0.46 
Cl--dep % 32% 41% 38% 
NH4

+:SO4
2- 2.3 2.8 2.7 

    
Table 33.  Ion ratios for May 10, 2002. 
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Appendix 2: (Continued) 
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Figure 57.  Size distributions for May 15, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.83 0.81 0.83 

NO3
-:Na+ 0.39 0.38 0.40 

Cl--dep % 30% 31% 29% 

NH4
+:SO4

2- 2.0 1.8 2.1 
    

Table 34.  Ion ratios for May 15, 2002. 
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Appendix 2: (Continued) 
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Figure 58.  Size distributions for May 16, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.80 0.93 0.94 

NO3
-:Na+ 0.49 0.37 0.32 

Cl--dep % 32% 21% 20% 

NH4
+:SO4

2- 1.7 1.9 2.3 
    

Table 35.  Ion ratios for May 16, 2002. 
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Appendix 2: (Continued) 
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Figure 59.  Size distributions for May 17, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.90 0.89 0.67 
NO3

-:Na+ 0.29 0.36 0.50 
Cl--dep % 23% 24% 43% 
NH4

+:SO4
2- 1.7 1.9 2.0 

    
Table 36.  Ion ratios for May 17, 2002. 
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Appendix 2: (Continued) 
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Figure 60.  Size distributions for May 19, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.77 0.70 0.95 
NO3

-:Na+ 0.45 0.43 0.65 
Cl--dep % 34% 41% 20% 
NH4

+:SO4
2- 2.0 1.9 2.3 

    
Table 37.  Ion ratios for May 19, 2002. 
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Appendix 2: (Continued) 
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Figure 61.  Size distributions for May 23, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.93 0.97 0.89 

NO3
-:Na+ 0.26 0.26 0.23 

Cl--dep % 21% 17% 24% 

NH4
+:SO4

2- 2.0 1.9 1.6 
    

Table 38.  Ion ratios for May 23, 2002. 
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Appendix 2: (Continued) 

Dp (µm)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

Dp (µm)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

Na+

Cl-
NO3

-

Dp (µm)
0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

(a) Azalea 

(b) Gandy 

(c) Sydney

D
p 

(µm)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

0.10

Dp (µm)0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

0.10

Dp (µm)

0.01 0.1 1 10

dC
/d

Lo
gD

 (u
m

ol
 m

-3
)

0.00

0.02

0.04

0.06

0.08

0.10

NH4+

SO4
2-

(d) Azalea       

(e) Gandy  

(f) Sydney

Na+ 
Cl-

NO3-

Na+ 
Cl-

NO3-

Na+ 
Cl-

NO3-

NH4+

SO4
2-

NH4+

SO4
2-

 
Figure 62.  Size distributions for May 24, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.88 0.84 0.84 

NO3
-:Na+ 0.28 0.33 0.34 

Cl--dep % 25% 28% 29% 

NH4
+:SO4

2- 2.1 2.3 1.7 
    

Table 39.  Ion ratios for May 24, 2002. 
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Appendix 2: (Continued) 
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Figure 63.  Size distributions for May 25, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.77 0.73 0.71 

NO3
-:Na+ 0.37 0.37 0.45 

Cl--dep % 34% 38% 39% 

NH4
+:SO4

2- 2.1 2.3 2.1 
    

Table 40.  Ion ratios for May 25, 2002. 
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Appendix 2: (Continued) 
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Figure 64.  Size distributions for May 31, 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.58 0.58 0.36 

NO3
-:Na+ 0.81 0.82 1.32 

Cl--dep % 50% 50% 70% 

NH4
+:SO4

2- 2.0 2.2 2.2 
    

Table 41.  Ion ratios for May 31, 2002. 
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Appendix 2: (Continued) 
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Figure 65.  Average size distributions for May 2002. 

  Azalea Gandy  Sydney 
Cl-:Na+ 0.78 0.76 0.72 

NO3
-:Na+ 0.45 0.45 0.54 

Cl--dep % 34% 36% 39% 

NH4
+:SO4

2- 2.0 2.1 2.1 
    

Table 42.  Overall ion ratios for May 2002. 
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Appendix 3.  Density Calculation for Aqueous Aerosol 

 

Variables defined: 

 Vi  molar volume of i 

 Xi  mole fraction of i 

 Mi  molar mass of i 

 ρi  density of i 

 wi mass fraction of i in aqueous phase 

 Fi mass fraction of i in total particle 

 soln solution 

 s solute (salt) in aqueous phase of the particle 

 w water 

 solid solid or crystalline phase of the particle 
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Appendix 3: (Continued) 
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Appendix 4.  Size Distributions and Data Inversion 

 

 Cascade impactors are the standard instruments for measuring particle 

size distributions (Puttock, 1981).  They separate particles by size according to 

their inertial properties (O'Shaughnessy and Raabe, 2003).  The size 

distributions result from either directly assigning the collected mass or 

concentration to the given size on each stage or indirectly through the reduction 

of the impactor data (O'Shaughnessy and Raabe, 2003). 

 The direct application of the data assumes that the instrument response is 

ideal, that the deposition step functions of each stage are perfectly sharp 

(Cooper and Spielman, 1976; Ramachandran et al., 1996).  This is the most 

widely used approach for treating cascade impactor data (Cooper and Spielman, 

1976).  The ideal or perfect step function efficiency curve assumption says that 

all particles greater than a certain size are collected on a particular stage and all 

particles smaller than that size pass through (Hinds, 1999; Puttock, 1981).  This 

allows the mass or concentration on a stage to be directly assigned to a given 

particle size.  Most well defined impactors can be assumed to be ideal, in that 

they have a sharp cut-off curve that approaches the ideal curve (Cooper and 

Spielman, 1976; Hinds, 1999).  The following displays the collection efficiencies 

as a function of particle diameter for the MOUDI sampler (Figure 66). 
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Appendix 4: (Continued) 
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Figure 66.  Collection efficiencies as a function of particle diameter for the 

MOUDI sampler (adapted from Marple et al., 1991). 

 

 The cutpoint for each collection stage of a cascade impactor is determined 

by the 50% collection efficiency point (Hinds, 1999).  Each collection stage, or 

particle bin, has a range of particle sizes collected.  The range is determined by 

the cutpoint characteristics of the adjacent stages.   

 For cascade impactors with non-ideal, broad responses, the measured 

data must be reduced through a process known as inversion (Markowski, 1987).  

Data inversion is the “inference of the particle size distribution function from the 
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Appendix 4: (Continued) 

 

measured stage loadings” (Puttock, 1981).  Data inversion is used when the 

collection characteristics of cascade impactors deviate from ideal and when the 

impactors provide too few size separations to accurately resolve the complex 

size distributions occurring in the atmosphere (Puttock, 1981; Ramachandran 

and Kandlikar, 1996). 

 The mass on each stage loading is related to the kernel function, which is 

the fraction of particles that enters the instrument and is collected on a particular 

stage (Ramachandran et al., 1996; Ramachandran and Kandlikar, 1996).  Kernel 

functions are determined for each stage of the instrument and are a function of 

the collection efficiency curves.  For non-ideal response impactors, kernel 

functions overlap as particles of a given size are collected on more than one 

stage (Ramachandran and Kandlikar, 1996).  The kernel function can be 

calculated using: 

( ) ( ) ( )[ ] ( )[ ] ( )[ ]aaiaiaiai DEDEDEDEDK 121 111 −−−= −− K   (Equation 38) 

where Ei(Da) is the collection efficiency of the ith stage as a function of the particle 

aerodynamic diameter.  The following shows the kernel functions for the eight 

stages of the MOUDI sampler used in these studies (Figure 67). 
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Appendix 4: (Continued) 
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Figure 67.  Deposition kernel functions for the MOUDI as functions of particle 

aerodynamic diameter. 

 

 The kernel functions are not strictly independent; there is overlap between 

them (Ramachandran and Kandlikar, 1996).  For stage one of the MOUDI 

sampler, the kernel function shows poor efficiency for particle collection.  The 

inlet of this instrument was designed for high efficiency for particles less than 10 

µm.  The top two stages result in less than perfect collection and need to be 

taken under consideration. 
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 The data inversion process takes the kernel functions and uses them in 

algorithms.  The results are often of poorer quality than those obtained from a 

direct application of the data, as the inversion problem is ill defined and results in 

multiple iterations and solutions (Ramachandran and Kandlikar, 1996).   
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